huggingface
文章平均质量分 87
太厉害的架构
tangjunjun-owen
从事人工智能行业,已从事工业检测行业、智慧交通行业、智慧城市行业,已有如下经验:
ARM/jetson部署、NVIDIA性能优化、道路感知2D、单目3D、点云3D、目标跟踪、深度估计、多模态大模型与语言大模型、lidar/radar/vison多传感融合、中间件ROS2开发、相机标定、工业2D检测/分类/分割、数据增强、attention、transformer、模型压缩加速
计算机技能:C++、Python、cuda、tensorrt、ros2
展开
-
huggingface的self._maybe_log_save_evaluate、self.save_model、self._save源码解读(权重等内容保存)
在 Hugging Face 中,self._maybe_log_save_evaluate是有关权重等内容相关保存函数。本文通过该函数探索huggingface内部源码对权重相关文件保存方法,以供读者了解huggingface保存权重文件原理。之所以,单独写出来,是要强调,我们可以使用这种方式灵活实现自己需求。特别是使用save_model等函数来保存权重,也可对Trainer进行继承来保存你想要的参数等。原创 2024-05-30 20:30:00 · 467 阅读 · 0 评论 -
huggingface的self.state与self.control来源(TrainerState与TrainerControl)
在 Hugging Face 中,self.state 和 self.control 这两个对象分别来源于 TrainerState 和 TrainerControl,它们提供了对训练过程中状态和控制流的访问和管理。通过这些对象,用户可以在训练过程中监视和调整模型的状态,以及控制一些重要的决策点。本文主要介绍huggingface的trainer中的self.control与self.state的来源。原创 2024-05-29 22:00:00 · 1931 阅读 · 0 评论 -
第十二节 huggingface的TrainingArguments与trainner参数说明
在huggingface中,有关trainer内容实在太多了,我将布局6篇文章来构建有关内容。第一篇文章介绍参数;第二篇文章给出一个完整Demo,并介绍trainner源码的整体结构,呈现一个整体框架;第三篇文章介绍给出数据构造、优化器构建方法源码解读;第四篇篇文章介绍epoch外循环训练相关源码解读;第五篇文章介绍step内循环训练相关源码解读;第六篇文章介绍Resume方法内容,包含继承数据、继承优化器、继承模型等实现完整断点续训功能。 而本篇为第一篇文章,主要解读参数用法与含义。原创 2024-04-26 11:08:22 · 924 阅读 · 0 评论 -
第九节 基于huggingface加载openai/clip-vit-large-patch14-336视觉模型demo
本文介绍如何使用huggingface加载视觉模型openai/clip-vit-large-patch14-336,我之所以记录此方法源于现有大模型基本采用huggingface库来加载视觉模型和大语言模型,我也是在做LLava模型等模型。基于此,本节将介绍如何huggingface如何加载vit视觉模型。原创 2024-02-26 20:26:04 · 3483 阅读 · 1 评论 -
tokenizer添加token的详细demo
我们在Hugging Face不同模型对应的tokenizer映射字典,不存在某些专有词汇,我们需要新增对应的token,以便我们使用对应模型处理不存在专业词汇。为此,本篇文章针对此问题,记录如何为tokenizer添加对应词汇,便于模型转换。原创 2024-02-21 21:06:38 · 1485 阅读 · 0 评论 -
huggingface实战bert-base-chinese模型(训练+预测)
Hugging Face是一家人工智能公司,致力于提供自然语言处理(NLP)模型和工具的开源库。他们的开源库包括了BERT等各种预训练模型的实现,以及用于训练、微调和部署这些模型的工具。在本文中,我们将探讨如何使用Hugging Face的库来构建一个BERT分类模型,该模型能够对文本进行分类,例如情感分析、文本分类等任务。我们将介绍如何使用Hugging Face提供的transformers库来构建、训练和评估BERT分类模型。原创 2024-01-08 21:50:00 · 2878 阅读 · 2 评论 -
huggingface的tokenizer解读
目前很多大模型或NLP相关模型可使用huggingface实现,是一个非常好用的集成库,特别是transformer库。而Hugging Face的Tokenizer模块是该平台的重要组成部分,主要用于文本的处理和编码。Tokenizer模块提供了各种先进的文本处理工具,包括分词、编码、解码等功能。本文将以llama模型作为tokenizer列子,介绍tokenizer相关使用内容。原创 2024-01-01 00:00:00 · 2497 阅读 · 0 评论
分享