
大语言模型数据流程源码解读(基于llama3模型)
如果只是简单构建训练与推理的大语言模型,还是比较简单,直接使用huggignface调用即可。然而,理解其源码或内部原理是比较麻烦的,尽管我在之前文章给出了很多解释,但我还是想通过数据流走向来解读模型整个流程与源码内部机理。这样,我们可方便更深入的理解大语言模型!
个人简介:从事人工智能行业,已从事工业检测行业、智慧交通行业、智慧城市行业,已有如下经验: ARM/jetson部署、NVIDIA性能优化、道路感知2D、单目3D、点云3D、目标跟踪、深度估计、多模态大模型与语言大模型、lidar/radar/vison多传感融合、中间件ROS2开发、相机标定、工业2D检测/分类/分割、数据增强、attention、transformer、模型压缩加速 计算机技能:C++、Python、cuda、tensorrt、ros2
大语言模型教程(基于llama模型)
多模态大模型教程(基于LLAVA模型)
huggingface源码解读教程
CUDA
tools
深度估计
python-pytorch
语言模型-多模态大模型
paper解读
huggingface
目标跟踪(track)
目标检测
模型蒸馏-distillation
坐标标定(相机-雷达)
ROS2
deepstream
tensorrt 
