一、为什么不能用float存储金额呢
- 先看demo:
@Test
public void testFloat() {
float f1 = 6.6f;
float f2 = 1.3f;
System.out.println(f1 + f2);
}
- 再看结果:
7.8999996
不由的心生敬畏,情理之中,意料之外,跟你的口算不一样了!!!
二、从计算机二进制角度计算 6.6 + 1.3 的过程
1、float底层存储原理
计算是由CPU来完成的,CPU表示浮点数由三部分组成 分为三个部分,符号位(sign),指数部分(exponent)和有效部分(fraction, mantissa)。其中float总共占用32位,符号位,指数部分,有效部分各占1位,8位,23位。如图:
2、二进制的转化
对于实数,转化为二进制分为两部分,第一部分整数部分,第二部分是小数部分。整数部分计算二进制大家都很熟悉。
整数部分的计算:6转化为二进制:
除以2 | 结果 | 小数部分 |
---|---|---|
6 | 3 | 0 |
3 | 1 | 1 |
1 | 0 | 1 |
所以6最终的二进制为110
小数部分的计算:
将小数乘以2,取整数部分作为二进制的值,然后再将小数乘以2,再取整数部分,以此往复循环
0.6转化为二进制:
乘以2 | 整数 | 小数部分 |
---|---|---|
1.2 | 1 | 0.2 |
0.4 | 0 | 0.4 |
0.8 | 0 | 0.8 |
1.6 | 1 | 0.6 |
1.2 | 1 | 0.2 |
…进入循环,循环体为1001 所以0.6转化为二进制为0.10011001… 6.6转化为二进制为110.10011001…
3、规约化
通过规约化将小数转为规约形式,类似科学计数法,就是保证小数点前面有一个有效数字。在二进制里面,就是保证整数位是一个1。110.10011001规约化为:1.1010011001*2^2。
4、指数偏移值
指数偏移值 = 固定值 + 规约化的指数值 固定值=2^(e-1)-1,其中的e为存储指数部分的比特位数,前面提到的float为8位。所以float中规定化值为127 6.6的二进制值规约化以后为1.1010011001*2^2,指数是2,所以偏移值就是127+2=129,转换为二进制就是10000001。
5、拼接6.6
6.6为正数,符号位为0,指数部分为偏移值的二进制10000001,有效部分为规约形式的小数部分,取小数的前23位即10100110011001100110011,最后拼接到一起即 01000000110100110011001100110011 到这里已经大致可以知道float为什么不精确了,首先在存储的时候就会造成精度损失了,在这里小数部分的二进制是循环的,但是仍然只能取前23位。double造成精度损失的原因也是如此。
三、如果不能使用float那该用什么类型存储金额呢
- 使用int 数据库存储的是金额的分值,显示的时候在转化为元
- 使用decimal mysql中decimal存储类型的使用
CREATE TABLE `test_decimal` (
`id` int(11) NOT NULL,
`amount` decimal(10,2) NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4
@Autowired
private JdbcTemplate jdbcTemplate;
@Test
public void testDecimal() {
TestDecimal testDecimal1 = jdbcTemplate
.queryForObject("select * from test_decimal where id = ?",
new BeanPropertyRowMapper<>(TestDecimal.class), 1);
TestDecimal testDecimal2 = jdbcTemplate
.queryForObject("select * from test_decimal where id = ?",
new BeanPropertyRowMapper<>(TestDecimal.class), 2);
if (testDecimal1 != null && testDecimal2 != null) {
BigDecimal result = testDecimal1.getAmount().add(testDecimal2.getAmount());
System.out.println(result);
}
}
- 看结果,这次符合预期了
7.90
四、使用decimal存储类型也有缺点
- 占用存储空间。浮点类型在存储同样范围的值时,通常比decimal使用更少的空间
- 使用decimal计算效率不高
因为使用decimal时间和空间开销较大,选用int作为数据库存储格式比较合适,可以同时避免浮点存储计算的不精确和decimal的缺点。对于存储数值较大或者保留小数较多的数字,数据库存储结构可以选择bigint,可以同时避免浮点存储计算不精准和DECIMAL精度计算代价高的问题