python全栈知识点——面向对象

这篇博客记录一些我以前记得不扎实的或没接触过的知识点。 class A(): name = "aaa" age = 10 def __init__(self): self.name = "z...

2018-08-24 00:15:09

阅读数 135

评论数 0

深度学习手册——深度神经网络的超参数调试、正则化及优化方法(长文多图)

0 前言 本文对深度神经网络超参数优化进行概要总结,适合有一定基础的人员查阅。   1 训练基础 深度神经网络选择超参数是一个迭代过程,即使经验丰富的工程师,在面对新的任务时也需要在不断尝试中找到好的网络参数。 1.1 训练集、验证集、测试集 比例: 在机器在学习时代,数据集往往不大...

2018-08-17 10:46:56

阅读数 3832

评论数 0

TensorFlow实战——Softmax分类MNIST

下面代码使用Softmax分类MNIST,并绘制准确率随训练次数变化的关系图: (代码会自动下载MNIST数据集放在"MNIST_data/"文件夹中,若数据及存在则直接使用) # coding:utf-8 import matplotlib.pyplot...

2018-08-01 10:55:42

阅读数 73

评论数 0

PCL库学习笔记——KdTree查找

本篇主要演示使用KdTree查找特定点、位置的K近邻或最近邻,以及用户指定半径范围内查找所有近邻,并计算出距离。KdTree是计算机科学中用来组织K维数据点集的数据结构。类似二叉树。在三位点云中主要用的是三维的KdTree,这种数据结构能提供快速的查找近邻算法。代码:#include &a...

2018-07-09 16:25:38

阅读数 1042

评论数 0

PCL库学习笔记——连接两个点云

本篇将展示如何串联两个不同点云的点。此处强加的约束是两个数据集中的字段类型和数量必须相等。后面还将展示如何连接两个不同点云的字段 (例如, 维度)。此处强加的约束是两个数据集中的点数必须相等。#include <iostream> #include &a...

2018-07-09 15:47:44

阅读数 308

评论数 0

PCL库学习笔记——从PCD文件读、写点云数据

1、读取PCD文件#include <iostream> #include <pcl/io/pcd_io.h> #include <pcl/point_types.h&gt...

2018-07-09 14:50:07

阅读数 435

评论数 0

PCL库学习笔记——从深度图提取NARF关键点

下面代码演示了如何从深度图中提取我们感兴趣的NARF关键点。#include <iostream> #include <boost/thread/thread.hpp> #include &l...

2018-07-09 14:26:44

阅读数 617

评论数 5

PCL库学习笔记——使用变换矩阵变换点云

下面的代码通过两种方式生成了变换矩阵,并执行了变换及可视化。#include <iostream> #include <pcl/io/pcd_io.h> #include <pcl/io...

2018-07-09 13:15:10

阅读数 1654

评论数 0

PCL库学习笔记——入门、基本的结构

PCL中的基本的数据类型是点云(PointCloud),是一个C++类。它包括以下成员:1、width(int)    对于有组织的点云数据,它代表数据集的宽度;    对于无组织的点云数据,它代表该点云中所有点的个数。    有组织点云(organized point cloud),是类似图像矩...

2018-07-09 11:44:18

阅读数 2200

评论数 0

VS2017配置PCL1.8.1、OpenCV3.4.1、KinectSDK2.0

本文为了记录我自己的配置过程,以供以后查看。第一次在VS中配置这些,有时候比写CMakeLists还费劲。版本:(库都是x64的)VS2017:官方下载的社区版。PCL1.8.1:GitHub上下载的All In One。OpenCV:官网下载的压缩包,解压直接可用的。配置:1、将每个库(包括Op...

2018-07-09 00:18:04

阅读数 443

评论数 0

关于使用新版Sophus(2018年6月github版本)的使用

1.头文件.h 修改为 .hpp    .hpp 是将头文件 源文件写在一起的文件。2.新本是模板类,定义时需要指定类型Sophus::SO3 SO3_R(R);     换成:Sophus::SO3<double> SO3_R(R);     打印需要...

2018-07-09 00:17:22

阅读数 998

评论数 0

Archlinux系统配置

1、安装    按照 链接 安装系统,连接中的方法基本与archwiki中一致。    这一步配置了系统内核,添加了国内源,安装了图形化界面。    这个 链接 是添加手动编译pkgbuild,和AUR源中安装软件。主要是使用makepkg和在/etc/pacman.conf中添加:[archli...

2018-07-09 00:16:48

阅读数 373

评论数 0

坐标系变换、相机模型以及色彩空间与深度空间的映射关系

首先,声明一些相关的定义:所有坐标系均使用标准的右手笛卡尔坐标系(基的模为1,坐标轴两两正交);下标"1","2"分别代表相机-深度坐标系、相机-色彩坐标系的量,世界坐标系下的量无下标,下标"21&q...

2018-07-08 23:58:26

阅读数 325

评论数 0

ArchLinux上使用Kinect V2——安装libfreenect2(附OpenNI2安装方法)

1.安装依赖见下面列表:(引自:https://github.com/OpenKinect/libfreenect2)Requirements for optional featuresOpenGL depth processing: OpenGL 3.1 (Windows, Linux, Mac...

2018-07-02 15:03:45

阅读数 221

评论数 0

安装Python

下载与安装    对于学习这一套教程,我们采用最小化安装,这样最易学,最明白。所谓最小化安装,指的是我们仅安装官方提供的环境,不使用Anaconda虚拟环境,不使用第三方开发环境,如Spyder,PyCharm等,这些可以将来等学会了精髓之后再去尝试使用。    Python v3.65 Wind...

2018-06-30 22:06:06

阅读数 94

评论数 0

Boston房价数据集线性回归—— sklearn & statsmodels 比较

import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model, metrics import statsmodels.api as ...

2018-05-16 20:48:40

阅读数 1189

评论数 0

Sigmoid函数推导(逻辑回归激活函数来历)

转载请注明出处:逻辑回归实际上是使用回归进行二分类的方法。线性回归返回的范围为\((-\infty,+\infty)\),而分类预测结果需要得到取值范围为\([0,1]\)的概率值,这样就需要一个由\((-\infty,+\infty)\)映射到\([0,1]\)的关系函数,这个函数关系,我们就可...

2018-05-16 18:39:25

阅读数 2842

评论数 0

数理统计——协方差与相关系数

协方差:协方差通俗地讲就是,两个随机变量之间相关联的波动程度。$$Cov(X,Y)=E[(X-EX)(Y-EY)]=E(XY)-EXEY$$性质:$$Cov(X,X)=DX$$$$Cov(X,Y)=0\Leftrightarrow E(XY)=EXEY(相互独立)$$$$Cov(X,Y)=0\Le...

2018-05-16 01:06:53

阅读数 174

评论数 0

比较样本方差对线性拟合结果的影响

代码和结果如下:import numpy as np import pandas as pd from sklearn.linear_model import LinearRegression import seaborn as sns def self_func(i): np...

2018-05-16 00:16:18

阅读数 347

评论数 0

线性拟合最小二乘法Python实现

下面代码实现的是最小二乘法线性拟合,并且包含自己造的轮子与别人造的轮子的结果比较。问题:对y=2.5x+0.8y=2.5x+0.8直线附近的带有噪声的数据进行线性拟合,最终求出w,b的估计值。最小二乘法基本思想是使得样本方差最小。代码中self_func()函数为自定义拟合函数,skl_func(...

2018-05-15 22:28:56

阅读数 1830

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭