蘇丶的博客

自己学习的记录

scikit-learn机器学习(七)--K近邻法

一丶引言 K近邻法是一种分类和回归算法,他输入特征的向量,通过计算新数据与训练数据特征值之间的距离,寻找K个距离最近的邻居进行分类判断,若K=1,则直接分类给他距离最近的数据的那一类。 基本原理是概括为: 给定一个数据集,对于新输入的数据,该数据与数据集中的k个样本最相似,如果这k个样...

2018-04-09 14:41:34

阅读数 233

评论数 0

scikit-learn机器学习(六)--朴素贝叶斯分类原理及python实现

朴素贝叶斯分类原理: 关于贝叶斯定理,参考上一篇博客: scikit-learn机器学习(五)–条件概率,全概率和贝叶斯定理及python实现 贝叶斯分类,个人理解,通俗的说: 假设各个特征之间都是独立存在的,根据这些特征来判断一个事件所属的类别的概率,该事件属于概率最大的类别 ...

2018-04-04 22:54:33

阅读数 638

评论数 1

scikit-learn机器学习(五)--条件概率,全概率和贝叶斯定理及python实现

在理解贝叶斯之前需要先了解一下条件概率和全概率,这样才能更好地理解贝叶斯定理一丶条件概率条件概率定义:已知事件A发生的条件下,另一个事件B发生的概率成为条件概率,即为P(B|A) 如图A∩B那一部分的发生的概率即为P(AB),P(AB)=发生A的概率*发生A之后发生B的概率=发生B的概率*发...

2018-04-04 14:19:14

阅读数 2472

评论数 4

scikit-learn机器学习(四)--决策树

决策树概述决策树是一种分类和预测方法,有监督的学习算法,以树状图为基础,决策树利用分层的思想将一个复杂的问题分解为多个简单的判断问题,最后得到最大支持的决策结果。 优点: 可读性强,分类速度快,计算复杂度不高时,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关的特征数据 缺点: 可能...

2018-04-03 19:44:07

阅读数 521

评论数 0

scikit-learn机器学习(三)--逻辑回归和线性判别分析LDA

scikit-learn机器学习(一)–多元线性回归模型 scikit-learn机器学习(二)–岭回归,Lasso回归和ElasticNet回归 scikit-learn机器学习(三)–逻辑回归和线性判别分析LDA 前面的线性回归模型是解决预测问题的,根据样本的多个特征,推测其目标值,但是...

2018-04-02 11:44:40

阅读数 1508

评论数 1

scikit-learn机器学习(二)--岭回归,Lasso回归和ElasticNet回归

scikit-learn机器学习(一)–多元线性回归模型 scikit-learn机器学习(二)–岭回归,Lasso回归和ElasticNet回归 scikit-learn机器学习(三)–逻辑回归和线性判别分析LDA 多元线性回归模型中,为了是均方差误差最小化,常见的做法是引入正则化,正则化...

2018-04-01 21:47:19

阅读数 2324

评论数 0

scikit-learn机器学习(一)--多元线性回归模型

scikit-learn机器学习(一)–多元线性回归模型 scikit-learn机器学习(二)–岭回归,Lasso回归和ElasticNet回归 scikit-learn机器学习(三)–逻辑回归和线性判别分析LDA 假设我们给定一个样本(x,y),x有n个特征,比如身体健康指数与身高,体重...

2018-04-01 14:05:58

阅读数 1490

评论数 0

提示
确定要删除当前文章?
取消 删除