自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(86)
  • 收藏
  • 关注

原创 用Python来学微积分39-定积分的物理应用详解

本文详细介绍了定积分在物理学中的三大应用:变力做功、水压力计算和质心确定。在变力做功部分,通过举高物体和抽水案例展示了积分方法;水压力问题分析了矩形闸门受力计算;质心部分则探讨了线段和平面图形的形心求解步骤。每个案例均配有详细推导和Python代码验证,帮助读者理解积分在物理问题中的应用原理和计算过程。这些方法将连续的物理问题离散化处理,通过定积分实现精确求解,体现了微积分工具在物理建模中的重要性。

2025-11-09 12:44:16 436 1

原创 定积分的几何应用(二):旋转体体积与曲线弧长计算详解

本文探讨了定积分在几何学中的两个重要应用:旋转体体积计算和曲线弧长求解。旋转体体积计算介绍了圆盘法和壳层法两种方法,分别适用于不同旋转轴情况。通过数学公式推导和具体示例演示了计算过程,并提供了Python代码实现两种方法的数值计算和结果可视化。文中还展示了椭圆旋转体等典型几何体的体积计算实例,验证了理论值与计算结果的正确性。这些方法在工程、物理和计算机图形学等领域具有重要应用价值。

2025-11-08 16:16:35 738 1

原创 定积分的几何应用(一):平面图形面积计算详解

本文介绍了定积分在几何学中的关键应用,重点阐述了微元法的基础思想及其在平面图形面积计算中的具体实施。文章详细讲解了直角坐标系下通过定积分计算两条曲线围成区域面积的方法,以及极坐标系下基于扇形面积公式的面积计算原理。通过理论阐述和Python代码实现相结合的方式,展示了如何将数学概念转化为实际计算过程,并验证了计算结果的准确性。文中提供的代码示例不仅可以直接用于解决类似几何问题,还通过可视化手段直观呈现了计算结果。这些方法为解决各种几何面积问题提供了系统的计算框架。

2025-11-08 15:18:56 847

原创 用Python来学微积分36-牛顿 - 莱布尼茨公式的深度解析

本文介绍了微积分基本公式——牛顿-莱布尼茨公式的核心应用,包括多项式、三角函数以及积分方程的求解方法。通过数学推导与Python代码实现相结合,详细展示了定积分的计算过程,并演示了如何利用定积分求极限。文章包含多个实例分析,从基本公式推导到编程实现,帮助读者深入理解这一重要数学工具在微积分中的关键作用。涉及的关键内容包括原函数求解、定积分线性性质以及积分和转换为定积分的方法等。

2025-11-07 19:23:39 775 2

原创 用Python来学微积分35-变上限定积分

摘要 变上限积分是微积分学中的重要概念,其定义为函数$f(x)$在区间$[a,b]$上的积分$\int_a^x f(t)dt$,结果随上限$x$变化而变化。本文系统阐述了变上限积分的定义、性质和主要应用:1) 变上限积分函数$F(x)$是连续的,且当$f(x)$连续时$F(x)$可导,导数为$f(x)$;2) 介绍了复合变上限积分的求导法则;3) 通过理论推导、实例计算和Python编程验证,展示了变上限积分在理论和实际计算中的核心作用。微积分基本定理揭示了微分与积分的互逆关系,而变上限积分正是这一关系的具

2025-11-07 18:02:36 729

原创 用Python来学微积分34-定积分的基本性质及其应用

本文系统介绍了定积分的重要性质及其应用。首先阐述了定积分的线性运算性质,证明了可积函数的线性组合仍可积且满足线性运算规则,并通过函数f(x)=x和g(x)=x²的实例验证。接着说明了区间可加性,展示了如何将积分区间分割计算,并以Python代码实现验证。在比较定理部分,证明了若f(x)≤g(x)则其积分也满足相应不等式,并通过x和x²的比较实例加以说明。最后介绍了估值定理,为定积分的理论分析和实际计算提供了重要工具。全文结合数学证明、手动计算和Python编程实现,系统全面地呈现了定积分的基本性质。

2025-11-06 12:08:55 1213 5

原创 用Python来学微积分33-定积分的应用实例详解

本文通过多个实例详细介绍了定积分在不同领域的应用,包括曲边梯形面积计算、变速直线运动位移、变力做功以及经济学中的边际成本问题。每个应用都包含手动求解步骤和Python实现代码,展示了从理论推导到数值计算的全过程。通过矩形积分法对函数f(x)=x²在区间[0,1]的具体计算,直观呈现了分割数n对近似精度的影响,验证了定积分在实际问题中的强大应用价值。

2025-11-06 09:03:36 1096

原创 用Python来学微积分32-定积分的可积性条件详解

本文探讨了函数可积性的必要条件和充分条件,指出函数有界是可积的必要条件,并通过反证法加以证明。通过Python代码示例验证了有界函数与无界函数的积分行为差异。文章还介绍了三大充分条件定理(连续、单调、有限间断点)及达布理论提供的充要条件,从理论上完整刻画了可积函数的本质特征。代码实现部分直观展示了不同条件下函数的可积性,帮助理解理论概念。

2025-11-05 18:33:25 817 3

原创 用Python来学微积分31-定积分的概念与几何意义详解

定积分的核心思想是通过"分割-近似-求和-取极限"的方法计算曲边梯形面积。其精确定义基于黎曼和的构造过程,将区间划分为若干子区间,选择取样点求和后取极限。几何上,定积分表示由曲线、直线和坐标轴围成的区域面积(如计算四分之一圆面积示例)。数值计算和可视化验证了理论值与实际结果的吻合性。

2025-11-05 12:57:01 1058 4

原创 用Python来学微积分30-微分方程初步

微分方程是描述变量与其变化率关系的数学工具,可分为常微分方程和偏微分方程。本文介绍了微分方程的基本概念,包括阶数、通解和特解,以及初值问题的求解方法。重点讨论了可分离变量微分方程的解法,并通过投资复利和曲线切线等实例展示了微分方程的实际应用。此外,还介绍了数值解法如欧拉法,用于处理难以解析求解的微分方程。文章结合手动推导和Python代码实现,加深了对微分方程求解的理解。

2025-11-04 13:48:36 1151 5

原创 用Python来学微积分29-原函数与不定积分完全指南

本文系统介绍了微积分中的原函数与不定积分概念。原函数是导数的逆运算,具有不唯一性(相差常数C)。不定积分表示所有原函数的集合,记作∫f(x)dx=F(x)+C。文章详细讲解了基本积分公式、线性性质等核心内容,并通过数学推导和Python代码验证相结合的方式,演示了幂函数、三角函数、指数函数等常见积分运算。最后通过综合例题展示了不定积分的实际应用,强调了对积分结果进行导数验证的重要性,为读者掌握微积分逆运算提供了清晰的学习路径。

2025-11-03 15:56:57 821 4

原创 用Python来学微积分28-泰勒公式

摘要: 泰勒公式是数学分析中的重要工具,通过多项式逼近复杂函数,简化计算。其核心思想是利用函数在某点的导数信息构造多项式近似表达式,分为佩亚诺型余项(局部近似)和拉格朗日型余项(全局误差估计)。常见函数的泰勒展开如 ( e^x )、( \sin x )、( \cos x ) 可通过导数规律快速推导。通过Python代码(如计算 ( e ) 和 ( \sin \frac{\pi}{6} ) 的近似值)验证了泰勒公式的实用性,展现了其在数值计算中的高效性与精确性。

2025-11-03 09:25:56 1620 27

原创 用Python来学微积分27-曲线的渐近线

本文通过Python编程生动讲解了微积分中的渐近线概念,包括三种类型:水平渐近线(曲线趋近的水平直线)、铅直渐近线(函数未定义点的垂直边界)和斜渐近线(曲线的最终斜向趋势)。文章结合数学定义与Python代码示例(如绘制y=1/x的渐近线),直观展示了渐近线的求法和验证过程,并探讨了其在工程、经济等领域的实际应用。通过互动挑战和代码实践引导读者深入理解这一重要数学概念,实现编程与数学的趣味结合。

2025-11-02 08:04:36 717 12

原创 用Python来学微积分26-曲线的凸性与拐点

本文通过形象比喻和Python代码演示,生动讲解了高等数学中曲线的凸性与拐点概念。首先以道路弯曲为例,介绍了凸性的直观定义和数学表达式,并通过y=x²案例手动验证下凸性质。随后引入二阶导数判断法,分析y=x³-3x²+2函数的凸性变化,用Python可视化展示凸性区间。最后详细讲解拐点的定义和判断方法,通过y=x³-4x+4案例和Python代码找出准确拐点位置。全文结合理论推导和编程实践,使抽象的数学概念变得直观易懂,适合数学爱好者和编程学习者理解应用。

2025-11-02 07:22:25 884 23

原创 用Python来学微积分25-微积分中的函数奥秘:单调性、极值与最值

本文通过Python案例生动讲解了微积分中函数的单调性、极值和最值三大核心概念。在单调性部分,展示了如何利用导数判断函数增减趋势;极值部分介绍了驻点分析法和Scipy优化工具;最值部分演示了闭区间极值搜索方法。文章配有完整Python代码和可视化图表,涵盖导数计算、临界点分析等实用技巧,帮助读者直观理解这些抽象概念,适合编程与数学结合的实践学习。

2025-11-01 08:28:31 767 19

原创 用Python来学微积分24-洛必达法则

洛必达法则是数学分析中解决不定式极限问题的重要工具。本文介绍了该法则的适用条件(包括0/0型和∞/∞型不定式),通过手动计算和Python代码验证展示了具体应用案例,如计算sinx/x、lnx/x等常见极限。文章强调使用该法则时需严格满足前提条件,并提供了Python sympy库的实践代码。最后鼓励读者通过练习巩固掌握这一方法,为后续更复杂的极限求解奠定基础。

2025-11-01 08:23:41 766 4

原创 用Python来学微积分23-微分中值定理

本文通过Python可视化生动讲解了微积分的三大中值定理:罗尔定理、拉格朗日中值定理和柯西中值定理。罗尔定理揭示了区间内水平切线的存在条件;拉格朗日定理推广为任意函数在区间内存在与弦平行的切线;柯西定理进一步扩展到参数方程情形。文中不仅给出定理的严格数学证明,还利用Python代码(如numpy和matplotlib)实现了定理的图形化验证,使抽象数学概念直观呈现。尤其展示了如何通过代码计算满足定理条件的点,并绘制函数图像与切线,让读者既能理解理论又能动手实践,完美体现了数学与编程的结合。

2025-10-31 14:09:16 1131 12

原创 用Python来学微积分22-费马定理

本文通过生动的Python代码实例,介绍了如何使用微积分中的极值概念和费马定理来寻找函数的最高点和最低点。文章涵盖了数值优化方法(如梯度下降法、SciPy优化库)和符号计算法(使用SymPy求导)两种核心方法,并结合可视化工具Matplotlib直观展示极值点的位置。通过将数学理论与编程实践相结合,帮助读者轻松理解微积分的实际应用,尤其适合初学者入门

2025-10-31 11:12:30 1001 14

原创 「用Python来学微积分」21. 玩转高阶导数

高阶导数在物理学和数学中具有重要应用。以匀加速直线运动为例,位移函数s(t)的一阶导数为速度v(t),二阶导数为加速度a(t)。通过Python符号计算和可视化验证,可以清晰地展示位移、速度、加速度的关系。此外,幂函数、指数函数和三角函数的高阶导数计算揭示了不同函数的微分规律,如指数函数保持形式不变、三角函数呈现周期性。参数方程的高阶导数求解方法(如椭圆参数方程)为解决曲线运动问题提供了有效工具。手动计算与Python验证相结合,有助于深入理解高阶导数的概念和应用。

2025-10-30 18:18:13 975 4

原创 「用Python来学微积分」20. 几种特殊函数求导法实战

本文介绍了五种特殊函数的Python求导方法:隐函数求导法(通过SymPy求解方程)、对数求导法(处理幂指函数)、参数方程求导法(利用参数变量关系),以及实际应用中的相关变化率问题和物理实例(小球运动、跳水速度)。文章结合数学推导与Python代码实现,展示了如何用SymPy库验证求导结果,并通过可视化帮助理解变化率概念。最后总结了不同函数类型的求导方法选择指南,建议在学习中注重几何意义理解与手算练习。完整代码已开源,适合通过编程加深微积分理解。

2025-10-30 12:01:37 1042

原创 《程序员AI之路:从Python起步》完全学习导航

旨在为所有新老读者提供一条清晰、无痛的学习路径。作为一名有10年经验的Java程序员,我将分享自己从Python起步,重学数学,到攻克AI算法的真实历程。(本阶段内容持续更新中,将系统讲解微积分、线性代数、概率统计等AI必需的数学知识,并用Python进行实战演示。- 深入TensorFlow/PyTorch,搭建你的第一个神经网络。- 用代码可视化导数、积分,理解梯度下降的数学原理。- 掌握贝叶斯定理、概率分布,为机器学习模型奠基。- 理解矩阵运算、向量空间,揭开神经网络的面纱。

2025-10-29 10:36:18 1806 28

原创 「用Python来学微积分」19. 导数的运算

本文介绍了导数的四则运算和复合函数求导的链式法则。导数的四则运算包括和差法则、乘法法则和除法法则,可用于组合简单函数的导数。通过运动合成、矩形面积变化和平均速度变化等实例,直观解释了这些法则的原理,并用Python代码验证了其正确性。链式法则用于复合函数求导,通过"剥洋葱"的方式从外到内逐层求导,文中以物体冷却过程和人口增长模型为例演示了链式法则的应用,并提供了Python实现进行验证。这些方法为解决复杂函数的导数计算提供了系统工具。

2025-10-28 10:57:17 760 8

原创 「用Python来学微积分」18. 微分

本文系统阐述了微分的核心概念及其在微积分中的重要性。首先从数学定义出发,通过函数增量引出微分概念,并给出严格定义:Δy = AΔx + o(Δx),其中A为不依赖于Δx的常数。通过Python代码验证了微分定义的正确性。其次,论证了可微与可导的等价关系,证明二者互为充要条件,并用数值实验验证了这一理论。最后,从几何角度阐释了微分的意义——表示函数在某点处切线的纵坐标变化量,并通过Python可视化展示了微分作为局部线性近似的本质。全文结合理论推导与数值验证,全面解析了微分这一微积分基本概念的定义、性质及几何

2025-10-27 08:23:22 762 25

原创 「用Python来学微积分」17. 导数与导函数

本文从几何和物理角度阐释导数的核心概念。导数精确描述了函数在某点的瞬时变化率,其数学定义为极限形式的平均变化率。物理应用中,导数可表示瞬时速度、加速度等变化率问题。通过单侧导数(左导数和右导数)可分析函数在特殊点的可导性,典型例子如绝对值函数在x=0处因左右导数不等而不可导。文章结合Python可视化演示了平均变化率趋近瞬时变化率的过程,以及绝对值函数的单侧导数特性,直观展示了导数的几何意义与分析方法。

2025-10-27 08:19:58 839 18

原创 「用Python来学微积分」16. 导数问题举例

本文介绍了导数和微分的核心概念及其历史背景。通过几何直观和Python案例,展示了导数在解决曲线斜率、运动速度和线密度等实际问题中的应用。文章重点阐述了从平均变化率到瞬时变化率的数学思想,并提供了Python代码演示这一过程。最后,作者提出了互动思考题和编程挑战,鼓励读者深入理解导数概念,并预告了下一节将讨论的严格定义和求导法则。

2025-10-26 13:26:31 1141 4

原创 「用Python来学微积分」15. 连续函数的性质

本文通过Python可视化探讨了连续函数的性质。首先回顾了连续函数的基本概念,重点分析了局部性质(保号性、有界性)和全局性质(零点存在定理、介值定理)。通过代码演示了函数在邻域内的保号特征,以及如何利用零点定理证明方程实根存在。文章还介绍了闭区间上连续函数的有界性和最值存在性,并提供了物理运动问题的应用实例。最后提出思考题和Python编程挑战,鼓励读者动手实践。这些性质为分析函数行为提供了重要工具,建议通过编程可视化加深理解。

2025-10-26 10:03:57 1322 3

原创 「用Python来学微积分」14. 连续函数的运算与初等函数的连续性

本文通过数学定理和Python可视化演示了连续函数的性质及其验证方法。主要内容包括:1)连续函数四则运算定理,证明和、差、积、商运算保持连续性,并通过Python绘制函数图像进行验证;2)复合函数连续性定理,展示极限运算与函数求值可交换次序的特性;3)初等函数(如幂函数)连续性证明实例,利用指数函数和对数函数的复合关系进行论证。文章结合理论推导与编程实践,直观呈现了连续函数的基本性质,为理解函数连续性提供了可视化支持。

2025-10-25 16:36:13 959 6

原创 「用Python来学微积分」13. 连续函数的基本概念与性质

本文系统介绍了连续函数的数学概念与性质。首先从几何直观入手,通过对比正弦函数(连续)、符号函数(x=0处不连续)和取整函数(整数点不连续)的图像,直观展示连续函数的"连绵不断"特性。其次,严格定义了函数在一点的连续性(ε-δ语言)和单侧连续性,并通过Python代码动态演示了ε-δ关系。文章还探讨了连续函数的运算性质(四则运算、复合保持连续性)以及闭区间上连续函数的重要定理(最值定理、介值定理)。最后,通过狄利克雷函数等实例区分了逐点连续与一致连续的概念。全文结合数学理论与可视化编程,帮

2025-10-25 15:32:19 1058

原创 「用Python来学微积分」12. 无穷小量和无穷大量

本文介绍了微积分中无穷小量的基本概念、性质及比较方法。首先定义了无穷小量和无穷大量,并通过Python代码演示了f(x)=x在x→0时的无穷小特性。其次,阐述了无穷小量的三个重要性质:极限与无穷小的关系、有界函数与无穷小的乘积仍为无穷小,以及无穷小的运算性质。最后,重点讲解了无穷小量的比较方法,包括高阶、等价和同阶无穷小的定义,并列举了常见等价无穷小关系。通过数值验证和可视化图表,直观展示了当x→0时各函数比值趋近于1的过程,帮助读者深入理解这一核心概念。

2025-10-24 21:51:45 1248 21

原创 「用Python来学微积分」11. 夹逼定理与单调有界收敛定理

本文通过Python可视化探讨了极限存在的两个重要判定方法:夹逼定理和单调有界收敛定理。夹逼定理通过构建不等式关系(如证明x²sin(1/x)在x→0时极限为0),利用Python绘制函数图像直观展示"夹逼"过程。单调有界定理则以递归数列aₙ₊₁=√(2+aₙ)为例,通过代码计算20项数列值并绘制收敛趋势图,验证数列单调递增且有上界时必收敛。文章包含完整Python代码实现,通过Matplotlib可视化展示极限判定过程,为理解微积分核心概念提供了程序验证方法。两个定理的代码验证均包含详

2025-10-24 10:27:45 1274 15

原创 「用Python来学微积分」10. 极限的运算

本文通过Python代码深入探讨了极限的四则运算和复合函数极限定理。首先详细介绍了极限加减乘除的数学定理与ε-δ证明方法,并用Python验证了这些法则的正确性。特别强调了除法法则中分母不为零的条件,并通过0/0型未定式的处理展示了特殊情况。其次,文章分析了复合函数极限定理的关键条件,包括内层函数极限存在、外层函数极限存在以及去心邻域条件,并通过Python可视化反例说明了条件的重要性。最后,文章结合Python的符号计算和绘图功能,实现了抽象数学概念的直观可视化,帮助读者更好地理解极限运算的本质。

2025-10-23 18:45:20 479 3

原创 「用Python来学微积分」9. 极限的四个基本性质

本文通过Python代码演示了极限的四个核心性质:唯一性、有界性、局部保号性以及函数与数列极限的关系。首先验证了函数极限的唯一性,如f(x)=(x^2-4)/(x-2)在x→2时极限为4;其次展示了极限存在时函数在去心邻域内的有界性;然后通过f(x)=x^2+0.5说明当极限L>0时函数的局部保号性。代码结合可视化图表,直观呈现了这些抽象数学概念,帮助读者通过编程实践深入理解极限理论。

2025-10-23 12:49:35 1128 1

原创 「用Python来学微积分」8. 极限的概念

本文系统介绍了极限理论中的六种自变量变化趋势,包括趋向有限点和无穷远的情况。文章首先回顾了极限思想的历史演变,从牛顿、莱布尼茨的无穷小概念到柯西、魏尔斯特拉斯的严格ε-δ定义。随后详细阐述了极限的数学定义,通过邻域概念和Python示例直观展示了函数在有限点和无穷远点的极限行为。重点分析了单侧极限的重要性,并给出分段函数案例说明极限存在的充要条件。全文结合理论定义与可视化编程,帮助读者深入理解极限这一微积分核心概念。

2025-10-22 21:56:25 375 1

原创 「用Python来学微积分」问题,二维图形关于任意直线的对称变换

本文介绍了如何利用线性变换实现几何图形关于任意直线的对称变换。核心思想是将复杂问题分解为简单步骤的组合:首先平移直线过原点,然后旋转使其与X轴重合,执行关于X轴的对称变换,最后逆向旋转和平移恢复原始位置。文章通过Python代码逐步演示了这一过程,使用numpy进行矩阵运算,matplotlib可视化每个步骤的变换效果。这种方法不仅适用于二维图形,其分步变换的思维也适用于更复杂的几何变换问题。

2025-10-22 15:53:04 472 2

原创 「用Python来学微积分」7. 极限问题举例

极限理论是微积分的核心基础,它使我们能够从有限认识无限,从近似认识精确。通过本文的三个经典例子,我们可以看到极限思想在哲学、金融和几何等领域的广泛应用。正如数学家柯西所说:“当一个变量逐次所取的值无限趋于一个定值,最终使变量的值和该定值之差要多小就多小,这个定值就叫做所有其他值的极限值。这种无限逼近的思维方式,不仅是数学研究的重要工具,也是我们认识复杂世界的有效方法。参考资料扈志明,《微积分》,高等教育出版社如有任何疑问,欢迎在评论区提出,我会尽快解答。。

2025-10-21 14:13:56 1082 2

原创 「用Python来学微积分」6. 点的轨迹与参数方程

本文系统讲解了数学分析中的轨迹方程和参数方程,通过典型例题和Python可视化展示其应用。轨迹方程通过五步法求解,包括建系、设点、列式、化简和检验,并以椭圆焦点相关轨迹和椭圆上动点垂足轨迹为例详细说明。参数方程则通过引入参数t间接描述曲线,如抛物线和摆线,并给出相应的Python代码实现可视化。两种方法结合几何意义和编程演示,使抽象的数学概念更直观易懂。

2025-10-21 11:03:32 820 4

原创 「用Python来学微积分」5. 曲线的极坐标方程

本文介绍了极坐标方程的曲线绘制方法,包括直线方程(pcosθ=2)和射线方程(θ=3π/4)的图形表示。重点展示了四类特殊曲线的极坐标方程及其Python可视化实现:1)阿基米德螺线(r=aθ)呈现等距螺旋;2)心形线(ρ=a(1-cosθ))形成心脏形状;3)双纽线(ρ²=2a²cos2θ)产生对称双环结构;4)四叶玫瑰线通过几何约束生成四瓣曲线。通过极坐标系绘图,这些在直角坐标系中较难表示的复杂曲线得以直观呈现,各曲线均配有参数说明和坐标转换公式。

2025-10-20 12:07:11 752 7

原创 「用Python来学微积分」4. 极坐标方程与参数方程

本文介绍了极坐标系的建立及其与直角坐标系的转换关系。首先说明了平面和空间直角坐标系的构建方法,并提供了Python代码示例来可视化展示。随后重点阐述了极坐标系的定义:以极点O和极轴Ox为基础,点M的坐标表示为(p,θ)。文章还给出了直角坐标与极坐标的互化公式,并讨论了直线在极坐标系中的方程表示,特别是过极点和特定点的直线方程。通过Python代码演示了极坐标下直线θ=π/4的绘制过程,直观展示了极坐标系的特性。

2025-10-19 18:34:02 1172 3

原创 「用Python来学微积分」3. 复合函数、隐函数、三角函数

本文介绍了三种重要的函数类型及其性质。复合函数由两个函数f和g构成,要求f的定义域与g的值域有交集,记为f∘g(x)=f(g(x)),并以y=g(x)作为中间变量。隐函数通过方程F(x,y)=0定义,可能无法显式表示,如xy+y-1=0可解出显式函数,而x²+y²+a²=0则不能确定函数。反函数要求原函数为单射,其图像与原函数关于y=x对称,单调函数必存在单调反函数。文中通过Python代码示例展示了反函数图像的绘制方法,并说明了三角函数坐标系的创建过程。

2025-10-19 08:51:34 1033 7

原创 「用Python来学微积分」2. 函数图像的变换

摘要 本文介绍了函数图像的三种基本变换方法:平移变换(左平移、右平移、上平移、下平移)、对称变换(关于x轴、y轴、原点对称)以及未展开的伸缩变换。每种变换都通过数学表达式定义,并配合Python代码实现可视化展示。文中给出了二次函数变换的具体示例,包括平移变换的坐标调整公式和对称变换的表达式转换,通过Matplotlib绘制对比图像直观呈现变换效果。这些基础图像变换方法为函数性质分析和图形处理提供了实用工具。

2025-10-18 09:21:41 1139 7

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除