xd_ljq
码龄8年
关注
提问 私信
  • 博客:15,918
    15,918
    总访问量
  • 11
    原创
  • 1,428,349
    排名
  • 3
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:陕西省
  • 加入CSDN时间: 2017-04-15
博客简介:

xd_ljq的博客

查看详细资料
个人成就
  • 获得8次点赞
  • 内容获得0次评论
  • 获得57次收藏
创作历程
  • 12篇
    2019年
成就勋章
TA的专栏
  • 算法 - 找工作笔试
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

186人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

机器学习12.推荐系统(2)--推荐系统,LR,LR+GBDT,FM及其扩展

1
原创
发布博客 2019.07.15 ·
679 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

机器学习12.推荐系统(1)--协同过滤、相似度计算、奇异值分解

可能要写的目录item协同过滤,user协同过滤
原创
发布博客 2019.07.10 ·
582 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

机器学习11. ROC曲线、AUC值、Accuracy、Precision、Recall 含义

AUC 【****】/ROC,Accuracy,Precision,Recall 含义。查准率,查全率,样本均衡问题部分图片转自这里行的True和False表示预测为正负列的Pos和Neg表示真实的正负表哥说明:True Positive(TP):将正类预测为正类的数量.True Negative(TN):将负类预测为负类的数量.False Positive(FP):将负类预测...
原创
发布博客 2019.05.12 ·
1801 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

机器学习8.常用优化方法(梯度下降/最速下降/共轭梯度/牛顿/拟牛顿)

梯度下降梯度下降,基于一阶泰勒公式,在某点处用平面拟合当前函数。在已知的位置xxx处,我们希望像某个方向走Δx\Delta xΔx使得左式f(x+Δx)f(x+\Delta x)f(x+Δx)变小。f(x+Δx)=f(x)+f′(x)∗Δxf(x+\Delta x)=f(x)+f'(x)*\Delta xf(x+Δx)=f(x)+f′(x)∗Δx一个直观的选取方式是选择下...
原创
发布博客 2019.04.28 ·
445 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

机器学习9. 生成模型,以VAE和GAN为例

生成模型:由数据学习联合概率分布P(X,Y),然后求出条件概率分布P(Y|X)作为预测的模型,即生成模型:P(Y|X)= P(X,Y)/ P(X)。如朴素贝叶斯。判别模型:数据直接学习决策函数Y=f(X)或者条件概率分布P(Y|X)作为预测的模型,即判别模型。如k近邻、决策树、SVM直接面对预测,往往准确率较高。1. AutoEncoder即N层的神经网络,输入数据和输出数据一致,...
原创
发布博客 2019.04.25 ·
771 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

机器学习7. 常用聚类方法

目录:K-meansGMMMeanShift层次聚类K-means:确定聚类个数,随机选择K个点作为初始聚类中心计算各样本到K个聚类中心的距离,将该样本归为距离最近的一类。距离可用欧氏距离J=∑k=1K∑j=1n(∣∣xi−uk∣∣2)J=\sum_{k=1}^{K}{\sum_{j=1}^{n}{(||x_i-u_k||^2)}}J=∑k=1K​∑j=1n​(∣∣xi...
原创
发布博客 2019.04.19 ·
870 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习6. 理解L0/L1/L2正则

本文转自: https://blog.csdn.net/m0_38045485/article/details/82147817对原文做了适当删改,额外增加了部分笔记。L1/L2的推导可以从两个角度:频率学派:最大化似然函数->带约束条件优化求解(拉格朗日乘子法)贝叶斯学派:最大后验概率【拉普拉斯与高斯先验】1.1 基于约束条件的最优化对于模型权重系数w的求解释通...
转载
发布博客 2019.04.16 ·
329 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

机器学习5. RNN/LSTM/GRU 反向传播公式推导;encoder-decoder框架/attention机制汇总

研究生期间主要科研的内容,先把基本公式推一推。RNN/LSTM正相传播和BPTT推导注意,公式中的梯度以某一时刻ttt为例,若要计算某个参数的总梯度,只需要对不同时刻的梯度求和即可。...
原创
发布博客 2019.04.15 ·
1746 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

机器学习4. 交叉熵损失函数与softmax回归的反向传播推导

在多分类问题中,一般选取softmax作为分类器,交叉熵作为损失函数。他们的形式都很简单,但是在BP的时候还是有些复杂,现在总结如下:交叉熵损失函数(1)C(a,y)=−∑iyilnaiC(a,y)=-\sum_i{y_i ln a_i} \tag{1}C(a,y)=−i∑​yi​lnai​(1)softmax逻辑回归第iii个输出值aia_iai​为:(2)ai=ezi∑kezka_i...
原创
发布博客 2019.04.15 ·
784 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

机器学习2. 集成学习 Boosting/Bagging/Stacking(Adaboost/GBDT/XGBoost/随机森林)

是
原创
发布博客 2019.04.14 ·
471 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习1. 决策树/随机森林

决策树主要的问题如何选择分类属性?如何建立决策树?(相关指标?)如何停止分裂?
原创
发布博客 2019.04.14 ·
296 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习3. EM算法与变分推断(Variational Inference)

参考文献PRML待定EM算法核心思想(以混合高斯为例):样本xxx是由多个混合高斯组成,若我们知道每个数据xix_ixi​来自于哪个混合高斯(如第kkk个),那么我们对所有属于类kkk的xikx_{ik}xik​使用极大似然估计就可以求得相应的参数。但是现在我们不知道样本xikx_{ik}xik​中到底属于哪个kkk,我们可以先根据当前的参数θ\thetaθ估计一个样本的类别向量zik...
原创
发布博客 2019.04.14 ·
4429 阅读 ·
6 点赞 ·
0 评论 ·
20 收藏

基于神经网络的人脸识别(附代码)

发布资源 2018.05.16 ·
zip