自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

@bangbang的博客

专注人工智能、图像分类、目标检测

  • 博客(3)
  • 资源 (46)
  • 收藏
  • 关注

空空如也

基于yolov5的知识蒸馏实战源码

知识蒸馏是提升网络性能的方法,通过一个教师网络指导学生网络的学习,将教师网络学习到的知识迁移到学生网络上。 整个项目包括: 1. 完整知识蒸馏原理教程及环境配置说明 2. 提供完整的数据及处理代码 3.提供完整的yolov5蒸馏代码 只要按照教程说明操作,就能理解蒸馏代码并掌握 整个知识蒸馏代码包括: 1. 完整知识蒸馏原理教程及环境配置说明 2. 提供完整的数据及处理代码 3.提供完整的yolov5蒸馏代码 只要按照教程说明操作,就能理解蒸馏代码并掌握 项目博客:https://bangbang.blog.csdn.net/article/details/126065848

2022-10-13

Tensorrt部署方案

1. 如何正确导出onnx 2. 动态bath和宽高 3. 自定义插件 4. 高性能低耦合部署方案

2023-04-18

基于Tensorrt的yolov5 实例分割源码

代码包括 - 1. onnx转 tensorrt engine - 2. 基于engine 的模型推理 - 3. 测试的模型文件

2023-04-18

各种卷积计算性能对比(Conv,DwConv,GhostConv,PConv,DSConv,DCNV)

各种卷积计算性能对比(Conv,DwConv,GhostConv,PConv,DSConv,DCNV),包括推理时间,GFlops,FPS

2023-03-26

基于yolov5的PTQ和QAT量化完整代码

1. quant_flow_ptq_int8.py是PTQ int8量化脚本 2. quant_flow_qat_int8.py 是QAT int8量化脚本 3. quant_flow_ptq_sensitive_int8.py 是敏感层分析的脚本

2023-03-18

模型量化校准代码: max,histogram,entropy

模型量化校准代码: max,histogram,entropy

2023-03-18

基于ncnn部署yolov5及量化

文件中包括以下内容: 1. yolov5 转ncnn的权重文件 2. ncnn的依赖库 3. 完整的源代码

2023-02-15

图像分割FCN算法的源码及项目实战

图像分割FCN算法的源码及项目实战 1. 项目博客: https://blog.csdn.net/weixin_38346042/article/details/128719053?spm=1001.2014.3001.5502

2023-02-04

模拟TensorRT int8量化代码

模拟了2个conv的8bit量化工作

2022-11-14

基于coco数据集的yolox模型预训练权重

yolox模型预训练权重

2022-11-07

基于YOLOv7的人体姿态估计讲解及源码

YOLOv7是YOLO家族中第一个包含人体姿态估计模型的。

2022-11-04

YOLOX原理及无人机检测项目实战源码

利用自定义无人机数据集训练YOLOX 数据修改 搭建YOLOX训练环境 使用Conda创建虚拟环境 安装Jupyter和ipykernel 克隆YOLOX GitHub库 安装依赖包 自定义数据集训练 YOLOX推理测试效果 结论

2022-11-04

模型轻量化-YOLOv5无损剪枝

运行顺序: 1. 原始训练,得到一个最优mAP等评价指标 2.通过调整BN稀疏值sr,运行train_sparity.py稀疏训练得到一个稍微小的模型 3. 将训练好的last.pt 放到prune.py 中进行剪枝,控制剪枝率; 4. Finetune得到最优模型

2022-10-28

基于yolov5的目标检测和双目测距源码

包括: 1.yolov5 +sgbm算法集成 2. C++实现sgbm 3.python 实现sgbm 4. jetson tensort 部署 项目参考博客:https://blog.csdn.net/weixin_38346042/article/details/126807379?spm=1001.2014.3001.5501

2022-10-28

pytorch多GPU并行训练教程及源码

多GPU启动指令说明: 1.如果要使用train_multi_gpu_using_launch.py脚本,使用以下指令启动 python -m torch.distributed.launch --nproc_per_node=8 --use_env train_multi_gpu_using_launch.py其中nproc_per_node为并行GPU的数量

2022-10-16

基于yolov5的模型剪枝项目实战源码

对yolov5s进行稀疏化训练并剪枝,模型参数下降80%,mAP精度几乎不受影响

2022-10-13

makefile从入门到项目编译实战

参考B站视频: https://www.bilibili.com/video/BV1Xt4y1h7rH/?p=3&spm_id_from=333.880&vd_source=d817bda3198969666552c553deaea683

2022-10-13

利用SGBM算法进行双目测距

利用SGBM算法进行双目测距

2022-09-11

图像分类MobileNet系列源代码:v1-v3

完整的MobileNet v1-v3的源代码,包括模型脚本、训练以及预测脚本。并有完整的博客介绍: 1. MobileNet系列(1) :MobileNet V1网络详解:https://blog.csdn.net/weixin_38346042/article/details/125329726?spm=1001.2014.3001.5501 2. MobileNet系列(2):MobileNet-V2 网络详解:https://blog.csdn.net/weixin_38346042/article/details/125355111?spm=1001.2014.3001.5501 3.MobileNet系列(4):MobileNetv3网络详解:https://blog.csdn.net/weixin_38346042/article/details/125470446?spm=1001.2014.3001.5501

2022-07-05

深度学习图像分类花朵数据集

包括四类花朵:daisy 、dandelion、roses、sunflowers ### 使用步骤如下: * (1)在data_set文件夹下创建新文件夹"flower_data" * (2)点击链接下载花分类数据集 [http://download.tensorflow.org/example_images/flower_photos.tgz](http://download.tensorflow.org/example_images/flower_photos.tgz) * (3)解压数据集到flower_data文件夹下 * (4)执行"split_data.py"脚本自动将数据集划分成训练集train和验证集val ``` ├── flower_data ├── flower_photos(解压的数据集文件夹,3670个样本) ├── train(生成的训练集,3306个样本) └── val(生成的验证集,364个样本) ```

2022-07-05

车道线Bev模型学习文档

车道线Bev模型学习文档

2025-03-10

yolov5 剪枝和量化,代码一键运行

1. 通过剪枝压缩了70%以上,几乎不影响精度 2. 提供量化感知训练的代码及tensorrt部署的代码

2023-09-16

MIOU涨5.6个点:语义分割知识蒸馏源码

教师模型Deeplab-V3 + (ResNet-101) miou为77.85 学生模型Deeplab-V3 + (ResNet-18) miou为67.5 经过蒸馏后,学生模型Deeplab-V3 + (ResNet-18) miou提升5.6个点,达到73.09。 比Student + LAD 和Student + CIRKD高大概2个点,比Student + DistKD高三个点 本项目提供的蒸馏方法,代码简单易用。

2024-03-20

yolov8 剪枝源码(集成多种剪枝策略)

支持以下的剪枝方法,代码一键运行,并配有md文档说明: (1) lamp 剪枝 (2) slimming 剪枝 (3) group slimming 剪枝 (4) group hessian 剪枝 (5) Taylor 剪枝 (6)Regularization 剪枝 等等

2024-03-20

yolov8 多任务(目标检测+可行驶区域分割+车道线分割)

(1)开发了一个轻量级模型,能够将三个任务集成到一个统一模型中。这对于需要实时处理的多任务特别有利。 (2)设计了一个轻量级、简单且通用的分割头。对于同一类型的任务头,我们有统一的损失函数,这意味着我们不需要针对特定​​任务进行定制设计。它仅由一系列卷积层构建。

2024-01-07

yolov8 PTQ和QAT量化源码

1.使用pytorch_quantization对yolov8进行量化: 包括ptq量化、敏感层分析、qat量化 2.修改ptq、qat、敏感层分析配置参数后直接运行 python yolov8_ptq_int8.py 其中: (1) quant_flow_ptq_int8.py是PTQ int8量化脚本 (2) quant_flow_qat_int8.py 是QAT int8量化脚本 (3)quant_flow_ptq_sensitive_int8.py 是敏感层分析的脚本

2023-12-09

yolov8 知识蒸馏源码

1. 本项目支持多种蒸馏方式,并对蒸馏代码进行详解,比较容易上手。支持 logit和 feature-based蒸馏以及在线蒸馏: (1)在线蒸馏 (2)logit 蒸馏 (3)mimic 特征蒸馏 (4)cwd: channel-wise distillation 特征蒸馏 (5)mgd: masked generative distillation 特征蒸馏 2. 代码通俗易懂,易于掌握

2023-12-18

YOLO 知识蒸馏学习及落地部署(v5和v8)

CWD、MGD、以及Mimic异构蒸与自蒸馏随便选择 项目支持yolov5,yolov8 的知识蒸馏; OTA, 解耦头的灵活配置

2023-12-10

SOTA 跟踪论文:BoTSORT-OCSORT-StrongSORT 等

SOTA 目标跟踪论文,精度这几篇就够够的了 (1)BoTSORT (2)OCSORT| (3)StrongSORT (4)HybridSORT (5)DeepOCSORT (6)ByteTrack

2023-12-21

yolov8 tracking支持deepocsort、strongsort、bytetrack、botsort等各类跟踪器

1. 项目支持各类SOTA多目标跟踪器,包括BoTSORT、DeepOCSORT、OCSORT、HybirdSORT、ByteTrack、StrongSORT 2. 项目支持分割、检测、姿态估计的实时跟踪Tracking 3. 项目不仅支持yolov8,还集成了包括集成了yolo-nas、yolox、yolov8-pose等检测、分割、姿态估计模型来

2023-12-21

Yolo v1-v8 改进点汇总

Yolo v1-v8 改进点汇总

2023-12-09

mmsegmentation中文文档

MMSegmentation是openmmlab项目下开源的图像语义分割框架,目前支持pytorch,由于其拥有pipeline加速,完善的数据增强体系,完善的模型库,作为大数据语义分割训练及测试的代码框架是再好不过了。

2023-11-26

零基础掌握yolov8剪枝

Before Pruning: MACs=129.092051 G, #Params=68.229648 M After Pruning: MACs=41.741203 G, #Params=20.787528 M

2023-11-26

车道线UFLD-v2落地量化部署代码

1. UFLD系列的车道线检测算法一直以来都是速度和精度的完美均衡而著称 2. 代码包括了全流程的算法落地方案,包括: (1)Int8的模型量化 (2)基于TensorRT来部署int8量化模型 (3)同时也适配FP32和FP16模型

2023-11-26

单目3D SMOKE PTQ量化代码

1. 单目3D SMOKE PTQ量化精度几乎无损 2. 工业级量化方法

2023-11-26

BevDet的PTQ量化代码

1. 环视BEV 3D目标检测算法int8量化 2. BevDet的PTQ int8 量化,精度几乎无损

2023-11-26

yolov7 ptq和qat训练及tensorrt部署

内容包括: (1) yolov7 的ptq和qat 的python 训练脚本 (2) 提供完整的基于tensort 的c++ 部署代码 (3) 详细的代码注释,帮助理解代码

2023-09-16

labelme 分割转换(voc coco) 及可视化

- labelme2coco.py - labelme2voc.py - labelme2voc_obj.py

2023-05-17

yolov7旋转目标检测完整代码

markdown有详细的代码使用说明,可以很容易运行代码 1. 提供检测的数据集 2. 支持各类数据增强 3. 支持TensorRT部署 4. 支持多GPU训练及单GPU或CPU训练

2023-05-13

yolov8s模型进行剪枝源码

实现步骤: 1. yolov8s模型预训练 2. 模型稀疏化sparsity 3.剪枝 4. finetune 经过键枝后,finetune60个epoch达到原模型迭代52个epoch的mAP值0.78,模型的大小减少了2/5。

2023-05-13

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除