【文献阅读】03-用于实体关系联合抽取的关系图模型-GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction
1 Introduction
1.1 实体关系联合抽取
实体关系抽取任务:提取具有语义关系的实体对,即三元组; 是信息提取的中心任务,需要从非结构化文本自动构建知识 。

实体关系抽取目前两种常见解决方案
Pipeline:早期的信息抽取将实体抽取和关系抽取看作两个独立的任务,这样的串联模型在建模上相对更简单。但这将实体识别和关系抽取当作两个独立的任务会导致一些问题:比如误差积累、实体冗余、关系重叠问题等等 。
联合抽取:对实体抽取和关系分类联合建模,能够利用实体和关系之间的交互信息,同时抽取实体并分类实体对的关系,可以很好地解决流水线方法所存在的问题。
三个关键方面仍需要在统一框架中进行全面处理:
实体识别和关系提取的端到端联合建模
对实体重叠关系的预测
考虑关系之间的相互作用
1.2 文章工作
这篇文章提出了一个端到端的联合模型 GraphRel:
对实体和关系进行端到端的联合建模,自动提取特征
仔细考虑实体与关系之间的相互作用,提出了带权重的GCN模型
对关系重叠问题进行了分析
在两个公共关系提取数据集上评估该方法:NYT和WebNLG

最低0.47元/天 解锁文章
4181

被折叠的 条评论
为什么被折叠?



