【文献阅读笔记】03-用于实体关系联合抽取的关系图模型

【文献阅读】03-用于实体关系联合抽取的关系图模型-GraphRel: Modeling Text as Relational Graphs for Joint Entity and Relation Extraction

1 Introduction

1.1 实体关系联合抽取

  实体关系抽取任务:提取具有语义关系的实体对,即三元组; 是信息提取的中心任务,需要从非结构化文本自动构建知识 。
在这里插入图片描述
实体关系抽取目前两种常见解决方案

Pipeline:早期的信息抽取将实体抽取和关系抽取看作两个独立的任务,这样的串联模型在建模上相对更简单。但这将实体识别和关系抽取当作两个独立的任务会导致一些问题:比如误差积累、实体冗余、关系重叠问题等等 。

联合抽取:对实体抽取和关系分类联合建模,能够利用实体和关系之间的交互信息,同时抽取实体并分类实体对的关系,可以很好地解决流水线方法所存在的问题。

三个关键方面仍需要在统一框架中进行全面处理:
实体识别和关系提取的端到端联合建模
对实体重叠关系的预测
考虑关系之间的相互作用

1.2 文章工作

这篇文章提出了一个端到端的联合模型 GraphRel:
对实体和关系进行端到端的联合建模,自动提取特征
仔细考虑实体与关系之间的相互作用,提出了带权重的GCN模型
对关系重叠问题进行了分析

在两个公共关系提取数据集上评估该方法:NYT和WebNLG

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>