数组的布尔索引
重点:使用布尔值索引选择数据时,总是生成数据的拷贝,即使返回的数组并没有任何变化。
利用布尔类型的数组进行数据索引,最终返回的结果是对应索引数组中数据为True位置的值。
如下例子,假设我们的数据都在数组中,并且数组中的数据是一些存在重复的人名。我会使用 numpy.random 中的 randn 函数来生成一些随机正态分布的数据:

假设每个人名都和 data 数组中的一行相对应,并且我们想要选中所有 "Bob" 对应的行。与数学操作类似,数组的比较操作(比如 ==)也是可以向量化的。因此,比较 names 数组和字符串 "Bob" 会产生一个布尔值数组:
本文介绍如何使用NumPy的布尔索引选择数据。通过比较运算创建布尔数组,可以高效地选取特定行,例如筛选出名字为'Bob'的记录。同时讨论了布尔索引的注意事项,如长度匹配,以及如何通过逻辑运算符(&, |)组合多个条件进行数据筛选。此外,还展示了如何设置数组中负值为0。"
130063921,10030279,小样本数据集拓展:基于插值的策略,"['机器学习', '人工智能', '数据处理', '算法实现', '数据集拓展']
订阅专栏 解锁全文
576

被折叠的 条评论
为什么被折叠?



