一、信息图形化
同样的数据在图表上显示的时候,如果坐标轴设置不一样,其表现的结果可能差别很大。因此,图表既可以证明结果,也可以用来说谎。
-
频数
- “频数”表示在一个特定组,或者说在一个特定敬意内的统计对象的数目,类似于数数。 饼图
- 饼图体现比例。
在设计以百分数为表现内容的图形时,请考虑这样一条黄金定律:设法指定出频数——或是将频数标在图形中间,或是标在图形旁边,均可。
-
条形图有:
- 垂直条形图;水平条形图;堆积图;分段条形图(也叫堆叠条形图)。
- 水平条形图用于展现类别数据,尤其是在类别名称太长的时候。
- 垂直条形图用于展现数值型数据;若类别名称不长,也用于体现类别数据。
- 条形图标度可以是百分数,也可以是频数。
- 类别数据,又称定性数据。
- 数值型数据,又称定量数据。
-
直方图
- 用长方形表示一个范围(面积)。 特点
- 每个长方形的面积与频数成比例;
- 图上的长方形之间没有间隔。
长方形高度用于量度一个特定组的频数的集中程序,是对频数密集度的一种量度,是用于说明数字到底是“稠密”还是“稀薄”的一种方法。长廊形的高度称为频数密度。
-
频数密度
- 频数密度指的是分组数据中的频数的密度集。计算方法如下:
- 频数密度 = 频数 / 组距 直方图
- 直方图是一种专门用于体现分组数据的图形。它看起来很像条形图,但每条长方形的高度等于 频数密度——而不是频数。
- 绘制直言图时,每个长方形的宽度与其分组宽度(“组距”)成正比例。长方形按照连续的数字标度绘制。
- 直方图中的每个组的频数通过长方形面积求出。
- 直方图的长方形之间没有间隔。 累积频数
- 累加到某个数值为止的总频数。基本上是所有频数的累计总和。 拆线图
- 拆线图能很好的体现数据趋势。
不要使用拆线图显示类别数据——除非要显示每一个类别的趋势,例如基于时间的趋势。如果要显示每一个类别的趋势,要为每一个类别画一条线。
二、集中趋势的量度
均值、中位数、众数。在统计帮里,它们都叫作平均数。
-
推导公式
- sum = x 1 + x 2 + … + x n . n表示数据的数量。 简化公式
- Σ x 表示所有x的各。Σ读作“西格码”。 均值的专用符号
- μ = Σ

本文介绍了统计学的基本概念,包括信息图形化的原则,如选择合适的图表展示数据并避免误导;集中趋势的量度,如均值、中位数和众数及其在偏斜数据中的应用;分散性与变异性的量度,如全距、四分位数、标准差和箱线图;以及概率计算的基础,包括概率的定义、互斥和独立事件的概念及计算方法。
最低0.47元/天 解锁文章
500

被折叠的 条评论
为什么被折叠?



