统计学笔记 一

本文介绍了统计学的基本概念,包括信息图形化的原则,如选择合适的图表展示数据并避免误导;集中趋势的量度,如均值、中位数和众数及其在偏斜数据中的应用;分散性与变异性的量度,如全距、四分位数、标准差和箱线图;以及概率计算的基础,包括概率的定义、互斥和独立事件的概念及计算方法。
摘要由CSDN通过智能技术生成

一、信息图形化

同样的数据在图表上显示的时候,如果坐标轴设置不一样,其表现的结果可能差别很大。因此,图表既可以证明结果,也可以用来说谎。

频数
“频数”表示在一个特定组,或者说在一个特定敬意内的统计对象的数目,类似于数数。
饼图
饼图体现比例。

在设计以百分数为表现内容的图形时,请考虑这样一条黄金定律:设法指定出频数——或是将频数标在图形中间,或是标在图形旁边,均可。

条形图有:
垂直条形图;水平条形图;堆积图;分段条形图(也叫堆叠条形图)。
水平条形图用于展现类别数据,尤其是在类别名称太长的时候。
垂直条形图用于展现数值型数据;若类别名称不长,也用于体现类别数据。
条形图标度可以是百分数,也可以是频数。
  • 类别数据,又称定性数据。
  • 数值型数据,又称定量数据。
直方图
用长方形表示一个范围(面积)。
特点
每个长方形的面积与频数成比例;
图上的长方形之间没有间隔。

长方形高度用于量度一个特定组的频数的集中程序,是对频数密集度的一种量度,是用于说明数字到底是“稠密”还是“稀薄”的一种方法。长廊形的高度称为频数密度

频数密度
频数密度指的是分组数据中的频数的密度集。计算方法如下:
频数密度 = 频数 / 组距
直方图
直方图是一种专门用于体现分组数据的图形。它看起来很像条形图,但每条长方形的高度等于 频数密度——而不是频数。
绘制直言图时,每个长方形的宽度与其分组宽度(“组距”)成正比例。长方形按照连续的数字标度绘制。
直方图中的每个组的频数通过长方形面积求出。
直方图的长方形之间没有间隔。
累积频数
累加到某个数值为止的总频数。基本上是所有频数的累计总和。
拆线图
拆线图能很好的体现数据趋势。

不要使用拆线图显示类别数据——除非要显示每一个类别的趋势,例如基于时间的趋势。如果要显示每一个类别的趋势,要为每一个类别画一条线。

二、集中趋势的量度

均值、中位数、众数。在统计帮里,它们都叫作平均数。

推导公式
sum = x 1 + x 2 + … + x n . n表示数据的数量。
简化公式
Σ x 表示所有x的各。Σ读作“西格码”。
均值的专用符号
μ = Σ
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值