第四章 DataStream API 介绍与使用
DataSource
def main(args:Array[String]): Unit ={
val env = StreamExecutionEnvironment.getExecutionEnvironment
//1.内置数据源
val textStream = env.readTextFile("/home/graviti/下载/flink-training-exercises-master/NOTICE.txt")
//2.socket
val socketStream = env.socketTextStream("localhost",9000)
//3.集合数据源
val dataStream = env.fromElements(Tuple2(1L,3L),Tuple2(1L,2L),Tuple2(1L,4l))
//4.Kafka
val properties = new Properties()
properties.setProperty("bootstrap.servers", "master:9092")
properties.setProperty("zookeeper.connect", "master:2181")
val schema = new SimpleStringSchema();
val consumer = new FlinkKafkaConsumer010[String]("video-stream-event",schema,properties)
val stream = env.addSource(consumer)
stream.setParallelism(4).print()
env.execute("kafkaConsumer

本文介绍了Flink DataStream API中的物理分区操作,包括随机分区、平衡分区、按比例分区和广播操作,强调了各策略在数据平衡和性能优化中的应用,并展示了自定义分区的实现代码示例。
最低0.47元/天 解锁文章
1万+

被折叠的 条评论
为什么被折叠?



