声明:感谢尚硅谷的公开资料和视频
程序员常用算法
二分查找算法(非递归)

package algorithm.search;
/**
* 二分查找 循环方式实现
*/
public class BinarySearchNoRecursion {
public static void main(String[] args) {
int[] arr = {1,3, 8, 10, 11, 67, 100};
int i = binarySearch(arr, 8);
System.out.println("返回的下标为:"+i);
}
/**
* @param arr 待查找的数组
* @param target 查询的目标
* @return 查到返回下标,未找到,返回-1
*/
public static int binarySearch(int[] arr, int target) {
int left = 0;
int right = arr.length-1;
while (left <= right){
// 说明继续查找
int mid = (left+right)/2;
if(arr[mid] == target){
return mid;
}else if(arr[mid] > target){
// 升序情况下,向左查找
right = mid-1;
}else{
// 升序情况下,向右查找
left = left+1;
}
}
return -1;
}
}
分治算法



package algorithm.divideAndConquer;
/**
* 汉诺塔
*/
public class HanoiTower {
public static void main(String[] args) {
hanoiTower(5,'A','B','C');
}
// 汉诺塔的移动方法
// 使用分治算法
public static void hanoiTower(int num, char a, char b, char c) {
// 如果只有一个盘
if (1 == num) {
System.out.println("第1个盘从" + a + "->" + c);
} else {
// 如果n >= 2 情况,最下边盘2,上面所有盘都看作1
// 1 先把最上面的盘 A->B
hanoiTower(num - 1, a, c, b);
// 2 先把最下面的盘 A->C
System.out.println("第"+num+"个盘从" + a + "->" + c);
// 3 把B上所有盘从B->C
hanoiTower(num - 1, b, a, c);
}
}
}
动态规划算法



package algorithm.dynamicProgramming;
import static java.lang.Math.max;
public class KnapsackProblem {
public static void main(String[] args) {
// 物品重量
int[] w = {1, 4, 3};
// 物品价值
int[] val = {1500, 3000, 2000};
// 背包容量
int m = 4;
// 物品个数
int n = val.length;
// 创建二维数组
// v[i][j]表示前i个物品中能够装入容量为j的背包中的最大价值
int[][] v = new int[n + 1][m + 1];
// 为了记录放入商品的情况,定义一个二位数组
int[][] path = new int[n + 1][m + 1];
//初始化第一行和第一列,这里可以不用处理
for (int i = 0; i < v.length; i++) {
v[i][0] = 0;//第一列设置为0
}
for (int i = 0; i < v[0].length; i++) {
v[0][i] = 0;
}
// 根据前面得到的公式动态规划处理
for (int i = 1; i < v.length; i++) {// 不处理第一行
for (int j = 1; j < v[0].length; j++) { // 不处理第一列
// 公式
if (w[i - 1] > j) {// 因为我们是从1开始的,那原来公式中w[i]修改为w[i-1]
v[i][j] = v[i - 1][j];
} else {
// 因为i从1 开始
//v[i][j] = Math.max(v[i - 1][j], val[i - 1] + v[i - 1][j - w[i - 1]]);
// 为了记录商品存放背包的情况,不能直接使用上面的公式,用if条件替代
if (v[i - 1][j] < val[i - 1] + v[i - 1][j - w[i - 1]]) {
v[i][j] = val[i - 1] + v[i - 1][j - w[i - 1]];
// 把当前情况记录到path
path[i][j] = 1;
} else {
v[i][j] = v[i - 1][j];
}
}
}
System.out.println();
}
// 输出
for (int i = 0; i < v.length; i++) {
for (int j = 0; j < v[i].length; j++) {
System.out.print(v[i][j] + " ");
}
System.out.println();
}
System.out.println("========================");
// 输出我们
// 最后放入的那些商品
// 这样输出,会出现冗余数据
/*
for (int i = 0; i < path.length; i++) {
for (int j = 0; j < path[i].length; j++) {
if(path[i][j] == 1){
System.out.printf("第%d个商品放入到背包",i);
}
}
System.out.println();
}*/
int i = path.length - 1;// 行的最大下标
int j = path[0].length - 1;// 列的最大下标
while (i>0){ // 从path = 最后开始找
if(path[i][j] == 1){
System.out.printf("第%d个商品放入到背包\n",i);
j -= w[i-1];
}
i--;
}
}
}
KMP算法


package algorithm.knuthMorrisPratt;
import java.util.Arrays;
/**
* kmp算法
*/
public class KMPAlgorithm {
public static void main(String[] args) {
String str1 = "BBC ABCDAB ABCDABCDABDE";
String str2 = "ABCDABD";
int[] kmpNext = kmpNext(str2);
System.out.println("next=" + Arrays.toString(kmpNext));
int index = kmpSearch(str1,str2,kmpNext);
System.out.println("index = "+index);
}
// kmp搜索算法
/**
* @param str1 原字符串
* @param str2 子串
* @param next 字串对应的部分匹配表
* @return -1 表示未匹配到,返回第一次匹配到的位置
*/
public static int kmpSearch(String str1, String str2, int[] next) {
// 遍历
for (int i = 0, j = 0; i < str1.length(); i++) {
// str1.charAt(i) != str2.charAt(j)时,调整j的大小
// kmp算法核心
while (j > 0 && str1.charAt(i) != str2.charAt(j)) {
j = next[j - 1];
}
if (str1.charAt(i) == str2.charAt(j)) {
j++;
}
if (j == str2.length()) {
return i - j + 1;
}
}
return -1;
}
// 获取到一个字符串(字串的)的部分匹配值
public static int[] kmpNext(String dest) {
// 创建一个next数组保存部分匹配值
int[] next = new int[dest.length()];
// 如果字符串长度为1,部分匹配值就是0
next[0] = 0;
for (int i = 1, j = 0; i < dest.length(); i++) {
//dest.charAt(i) == dest.charAt(j)不满足时,需要从next[j-1]获取新的j
// 直到我们发现有dest.charAt(i) == dest.charAt(j)才退出
// 这是kmp算法的核心
while (j > 0 && dest.charAt(i) != dest.charAt(j)) {
j = next[j - 1];
}
// dest.charAt(i) == dest.charAt(j)满足时,部分匹配值+1
if (dest.charAt(i) == dest.charAt(j)) {
j++;
}
next[i] = j;
}
return next;
}
}
贪心算法



package algorithm.greedyAlgorithm;
import java.util.*;
/**
* 贪心算法
*/
public class GreedyAlgorithm {
public static void main(String[] args) {
// 创建广播电台
Map<String, HashSet<String>> broadcasts = new HashMap<>();
HashSet<String> hashSet1 = new HashSet<>();
hashSet1.add("北京");
hashSet1.add("上海");
hashSet1.add("天津");
HashSet<String> hashSet2 = new HashSet<>();
hashSet2.add("广州");
hashSet2.add("北京");
hashSet2.add("深圳");
HashSet<String> hashSet3 = new HashSet<>();
hashSet3.add("成都");
hashSet3.add("上海");
hashSet3.add("杭州");
HashSet<String> hashSet4 = new HashSet<>();
hashSet4.add("天津");
hashSet4.add("上海");
HashSet<String> hashSet5 = new HashSet<>();
hashSet5.add("杭州");
hashSet5.add("大连");
broadcasts.put("k1", hashSet1);
broadcasts.put("k2", hashSet2);
broadcasts.put("k3", hashSet3);
broadcasts.put("k4", hashSet4);
broadcasts.put("k5", hashSet5);
//存放所有地区
HashSet<String> allAreas = new HashSet<>();
allAreas.add("北京");
allAreas.add("上海");
allAreas.add("天津");
allAreas.add("广州");
allAreas.add("深圳");
allAreas.add("成都");
allAreas.add("大连");
allAreas.add("杭州");
// 创建Arraylist,存放选择的电台集合
List<String> selects = new ArrayList<>();
// 定义一个临时集合,在遍历过程中,电台覆盖的地区和当前还没有覆盖地区的交集
Set<String> tempSet = new HashSet<>();
// 定义maxKey,保存再一次遍历过程中,能够覆盖最大未覆盖地区对应的电台的key
String maxKey = null;
// maxKey 不为空,则会加入到selects
while (0 != allAreas.size()){
// 不为0 则未覆盖所有地区
// 每进行一次while,需要将maxKey置空
maxKey = null;
// 遍历broadcasts
for (String key : broadcasts.keySet()){
// 每进行一次,都要置空
tempSet.clear();
HashSet<String> arears = broadcasts.get(key);
tempSet.addAll(arears);
// tempSet和allAreas 求交集,交集赋值给tempSet
tempSet.retainAll(allAreas);
// 如果当前集合包含未覆盖的地区的数量,比maxKey指向的集合未覆盖的地区还多
// 就需要重置maxKey
if(0 < tempSet.size()
&& (null == maxKey || tempSet.size() > broadcasts.get(maxKey).size())){
maxKey = key;
}
}
if(null != maxKey){
// maxKey不为空,就应该将maxKey加入到selects
selects.add(maxKey);
// 将maxKey指向的广播电台从allAreas中去掉
allAreas.removeAll(broadcasts.get(maxKey));
}
}
System.out.println("得到选择结果是"+selects);
}
}
普里姆算法



package algorithm.prim;
import java.util.Arrays;
/**
* 普利姆算法,解决最短路径问题
*/
public class Prim {
public static void main(String[] args) {
// 测试看看图是否创建OK
char[] data = new char[]{'A', 'B', 'C', 'D', 'E', 'F', 'G'};
int verxs = data.length;
//邻接矩阵关系创建 10000表示两个点不直联
int[][] weight = new int[][]{
{10000, 5, 7, 10000, 10000, 10000, 2},
{5, 10000, 10000, 9, 10000, 10000, 3},
{7, 10000, 10000, 10000, 8, 10000, 10000},
{10000, 9, 10000, 10000, 10000, 4, 10000},
{10000, 10000, 8, 10000, 10000, 5, 4},
{10000, 10000, 10000, 4, 5, 10000, 6},
{2, 3, 10000, 10000, 4, 6, 10000},};
// 创建MGraph对象
MGraph mGraph = new MGraph(verxs);
// 创建Mintree对象
MinTree minTree = new MinTree();
minTree.createGraph(mGraph, verxs, data, weight);
// 遍历展示
minTree.showGraph(mGraph);
// 测试prim算法
minTree.prim(mGraph,1);
}
}
// 创建最小生成树 -> 村庄的图
class MinTree {
// 创建图的邻接矩阵
/**
* @param mGraph 图对象
* @param verxs 图对应的顶点个数
* @param data 图的顶点的值
* @param weight 图的邻接矩阵
*/
public void createGraph(MGraph mGraph, int verxs, char data[], int[][] weight) {
int i, j;
for (i = 0; i < verxs; i++) {// 顶点
mGraph.data[i] = data[i];
for (j = 0; j < verxs; j++) {
mGraph.weight[i][j] = weight[i][j];
}
}
}
// 显示图的邻接矩阵
public void showGraph(MGraph graph) {
for (int[] link : graph.weight) {
System.out.println(Arrays.toString(link));
}
}
// 编写一个prim算法。得到最小生成树
/**
* @param graph 图
* @param verx 开始的顶点
*/
public void prim(MGraph graph, int verx) {
// 标价顶点是否被访问
int[] visited = new int[graph.verxs];
// 把当前节点标记为已经访问
visited[verx] = 1;
// h1 h2是记录顶点的下表
int h1 = -1;
int h2 = -1;
int minWeight = 10000;//默认为不直连
for (int k = 1; k < graph.verxs; k++) { // 有n个顶点,就有n-1条边
// 确定每一次生成的子图和哪个节点距离最近
for (int i = 0; i < graph.verxs; i++) {// i表示被访问的节点
for (int j = 0; j < graph.verxs; j++) {// j 表示未被访问的节点
if(visited[i] ==1 && visited[j] ==0 && graph.weight[i][j] <minWeight){
// 替换minWeight(寻找已经访问的节点和违背访问的节点的的权值)
minWeight = graph.weight[i][j];
h1 = i;
h2 = j;
}
}
}
//找到一条边是最小
System.out.println("边<"+graph.data[h1]+","+graph.data[h2]+">权值:"+minWeight);
visited[h2]=1;
// 重置minWeight
minWeight = 10000;
}
}
}
class MGraph {
int verxs;// 表示图节点个数
char[] data;// 存放节点数据
int[][] weight;// 存放边,就是我们的邻接矩阵
public MGraph(int verxs) {
this.verxs = verxs;
data = new char[verxs];
weight = new int[verxs][verxs];
}
}
克鲁斯卡尔算法


package algorithm.kruskal;
import java.util.Arrays;
/**
* 克鲁斯卡尔算法解决公交车问题
*/
public class KruskalCase {
private int edgeNum;// 边的个数
private char[] vertxs;// 顶点数组
private int[][] matrix;// 邻接矩阵
// 使用Integer最大值,表示两个点不能连通
private static final int INF = Integer.MAX_VALUE;
public static void main(String[] args) {
char[] vertxs = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
int matrix[][] = {
/*A*//*B*//*C*//*D*//*E*//*F*//*G*/
/*A*/ {0, 12, INF, INF, INF, 16, 14},
/*B*/ {12, 0, 10, INF, INF, 7, INF},
/*C*/ {INF, 10, 0, 3, 5, 6, INF},
/*D*/ {INF, INF, 3, 0, 4, INF, INF},
/*E*/ {INF, INF, 5, 4, 0, 2, 8},
/*F*/ {16, 7, 6, INF, 2, 0, 9},
/*G*/ {14, INF, INF, INF, 8, 9, 0}};
KruskalCase kruskalCase = new KruskalCase(vertxs, matrix);
// 遍历
kruskalCase.print();
/*EData[] edges = kruskalCase.getEdges();
// 排序前
System.out.println(Arrays.toString(edges));
System.out.println("排序后===================");
kruskalCase.sortEdges(edges);
System.out.println(Arrays.toString(edges));*/
System.out.println("克鲁斯卡尔算法最小生成树");
kruskalCase.kruskal();
}
public KruskalCase(char[] vertxs, int[][] matrix) {
// 初始化顶点个数
int vlen = vertxs.length;
// 初始化顶点,采用复制拷贝的方式
this.vertxs = new char[vlen];
for (int i = 0; i < vertxs.length; i++) {
this.vertxs[i] = vertxs[i];
}
// 初始化边 使用复制拷贝方式
this.matrix = new int[vlen][vlen];
for (int i = 0; i < vlen; i++) {
for (int j = 0; j < vlen; j++) {
this.matrix[i][j] = matrix[i][j];
}
}
// 统计边
for (int i = 0; i < vlen; i++) {
for (int j = i + 1; j < vlen; j++) {
if (INF != this.matrix[i][j]) {
edgeNum++;
}
}
}
}
public void kruskal() {
int index = 0;// 表示最后结果数组的索引
int[] ends = new int[edgeNum];// 用于保存“已有最小生成树”的每个顶点最小生成树的终点
// 创建结果数组,保存最小生成树
EData[] rets = new EData[edgeNum];
// 获取图中的所有的边
EData[] edges = getEdges();
System.out.println("图的边的集合=" + Arrays.toString(edges) + " 共" + edges.length + "边");
// 首先排序 按照边的权值升序排序
sortEdges(edges);
// 遍历edges[] 将边添加到最小生成树中时,准备加入边判断是否形成了回路。没有构成回路,就加入到rets,否则不让加入
for (int i = 0; i < edgeNum; i++) {
// 获取到第i条边的第一个顶点(起点)
int p1 = getPosition(edges[i].start);
// 获取到第i条边的第二个顶点(终点)
int p2 = getPosition(edges[i].end);
// 获取p1顶点在已有最小生成树中的终点
int m = getEnd(ends, p1);
// 获取p2顶点在已有最小生成树中的终点
int n = getEnd(ends, p2);
if (m != n) {// 没有构成回路
ends[m] = n;// 设置m在“已有最小生成树”中的终点
rets[index++] = edges[i];// 有一条边加入到rets
}
}
// 统计并打印最小生成树 输出rets
System.out.println("最小生成树");
for (int i = 0; i < index; i++) {
System.out.println(rets[i]);
}
}
// 打印邻接矩阵
public void print() {
System.out.println("邻接矩阵为:\n");
for (int i = 0; i < vertxs.length; i++) {
for (int j = 0; j < vertxs.length; j++) {
System.out.printf("%12d", matrix[i][j]);
}
System.out.println();
}
}
// 对边进行排序 冒泡排序,升序
public void sortEdges(EData[] edges) {
for (int i = 0; i < edges.length; i++) {
for (int j = 0; j < edges.length - 1 - i; j++) {
if (edges[j].weight > edges[j + 1].weight) {
EData temp = edges[j];
edges[j] = edges[j + 1];
edges[j + 1] = temp;
}
}
}
}
/**
* @param ch 顶点的值
* @return 顶点所在的下标
*/
private int getPosition(char ch) {
for (int i = 0; i < vertxs.length; i++) {
if (ch == vertxs[i]) {
return i;
}
}
return -1;
}
/**
* 功能: 获取图中边,放到EData[] 数组中,后面我们需要遍历该数组
* 是通过matrix 邻接矩阵来获取
* EData[] 形式 [['A','B', 12], ['B','F',7], .....]
*
* @return
*/
private EData[] getEdges() {
int index = 0;
EData[] edges = new EData[edgeNum];
for (int i = 0; i < vertxs.length; i++) {
for (int j = i + 1; j < vertxs.length; j++) {
if (INF != matrix[i][j]) {
// 将边加入到edges中
edges[index++] = new EData(vertxs[i], vertxs[j], matrix[i][j]);
}
}
}
return edges;
}
/**
* 功能:获取下标为i的顶点的终点,用于判断两个顶点的终点是否相同
*
* @param ends 记录了各个顶点的对应的终点,ends数组是在数组遍历过程中,逐步形成
* @param i 表示传入的顶点对应的下标
* @return 返回就是下标为i的这个顶点对应的重点的下标
*/
private int getEnd(int[] ends, int i) {
while (0 != ends[i]) {
i = ends[i];
}
return i;
}
}
// 创建一个类EData,对象实例表示一条边
class EData {
char start;// 边的起点
char end;// 边的终点
int weight;// 边的权值
public EData(char start, char end, int weight) {
this.start = start;
this.end = end;
this.weight = weight;
}
// 重写toString方法,便于输出
@Override
public String toString() {
return "EData{" +
"start=" + start +
", end=" + end +
", weight=" + weight +
'}';
}
}
迪杰斯特拉算法



package algorithm.dijkstra;
import java.util.Arrays;
/**
* Dijkstra迪杰斯特拉算法
*/
public class Dijkstra {
public static void main(String[] args) {
char[] vertex = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};
//邻接矩阵
int[][] matrix = new int[vertex.length][vertex.length];
final int N = 65535;// 表示不可以连接
matrix[0] = new int[]{N, 5, 7, N, N, N, 2};
matrix[1] = new int[]{5, N, N, 9, N, N, 3};
matrix[2] = new int[]{7, N, N, N, 8, N, N};
matrix[3] = new int[]{N, 9, N, N, N, 4, N};
matrix[4] = new int[]{N, N, 8, N, N, 5, 4};
matrix[5] = new int[]{N, N, N, 4, 5, N, 6};
matrix[6] = new int[]{2, 3, N, N, 4, 6, N};
//创建 Graph对象
Graph graph = new Graph(vertex, matrix);
//测试, 看看图的邻接矩阵是否ok
//graph.showGraph();
graph.dijkstra(6);
graph.showDijkstra();
}
}
class Graph {
private char[] vertex;// 顶点数组
private int[][] matrix;// 邻接矩阵
private VisitedVertex vv;// 已经访问的顶点的集合
// 构造图
public Graph(char[] vertex, int[][] matrix) {
this.vertex = vertex;
this.matrix = matrix;
}
// 显示图
public void showGraph() {
for (int[] link : matrix) {
System.out.println(Arrays.toString(link));
}
}
//显示结果
public void showDijkstra() {
vv.show();
}
// dijkstra 迪杰斯特拉算法
/**
* @param index 表示出发顶点的下标
*/
public void dijkstra(int index) {
vv = new VisitedVertex(vertex.length, index);
update(index); //更新index下标顶点到周围顶点的距离和周围顶点的前驱顶点
for (int j = 0; j < vertex.length; j++) {
index = vv.updateArr();// 选择并返回新的访问结点
update(index); //更新index下标顶点到周围顶点的距离和周围顶点的前驱顶点
}
}
// 更新index下标顶点到周围顶点的距离和周围顶点的前驱顶点
private void update(int index) {
int len = 0;
// 根据遍历我们的邻接矩阵 matrix[index]
for (int j = 0; j < matrix[index].length; j++) {
len = vv.getDis(index) + matrix[index][j];
if (!vv.in(j) && len < vv.getDis(j)) {
// 如果j这个顶点没有被访问过,并且len小于出发顶点到j的距离。就需要更新
vv.updatePre(j, index);// 更新j顶点到的前驱为index顶点
vv.updateDis(j, len);// 更新出发顶点到j顶点的距离
}
}
}
}
//已访问顶点集合
class VisitedVertex {
//记录各个顶点是否访问过 1表示访问过,0未访问,会动态更新
public int[] already_arr;
//每个下标对应的值为前一个顶点下标, 会动态更新
public int[] pre_visited;
//记录出发顶点到其他所有顶点的距离,比如G为出发顶点,就会记录G到其它顶点的距离,会动态更新,求的最短距离就会存放到dis
public int[] dis;
/**
* @param length 表示顶点的个数
* @param index 出发顶点对应的下标
*/
public VisitedVertex(int length, int index) {
this.already_arr = new int[length];
this.pre_visited = new int[length];
this.dis = new int[length];
// 初始化dis数组
Arrays.fill(dis, 65535);
this.already_arr[index] = 1;
// 设置到出发顶点的访问距离
this.dis[index] = 0;
}
/**
* 功能:判断顶点是否被访问过
*
* @param index
* @return 访问过true 没访问过false
*/
public boolean in(int index) {
return already_arr[index] == 1;
}
/**
* 功能:更新出发顶点到index顶点的距离
*
* @param index
* @param len
*/
public void updateDis(int index, int len) {
dis[index] = len;
}
/**
* 功能:更新顶点的前驱为index结点
*
* @param pre
* @param index
*/
public void updatePre(int pre, int index) {
pre_visited[pre] = index;
}
/**
* 功能:返回出发顶点到index顶点的距离
*
* @param index
*/
public int getDis(int index) {
return dis[index];
}
// 继续选择并返回新的访问点
public int updateArr() {
int min = 65535, index = 0;
for (int i = 0; i < already_arr.length; i++) {
if (0 == already_arr[i] && dis[i] < min) {
min = dis[i];
index = i;
}
}
// 更新index被访问过
already_arr[index] = 1;
return index;
}
//显示最后的结果
//即将三个数组的情况输出
public void show() {
System.out.println("==========================");
//输出already_arr
for(int i : already_arr) {
System.out.print(i + " ");
}
System.out.println();
//输出pre_visited
for(int i : pre_visited) {
System.out.print(i + " ");
}
System.out.println();
//输出dis
for(int i : dis) {
System.out.print(i + " ");
}
System.out.println();
//为了好看最后的最短距离,我们处理
char[] vertex = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };
int count = 0;
for (int i : dis) {
if (i != 65535) {
System.out.print(vertex[count] + "("+i+") ");
} else {
System.out.println("N ");
}
count++;
}
System.out.println();
}
}
弗洛伊德算法


package algorithm.floyd;
import java.util.Arrays;
/**
* 弗洛伊德(Floyd)算法
*/
public class Floyd {
public static void main(String[] args) {
// 测试看看图是否创建成功
char[] vertex = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };
//创建邻接矩阵
int[][] matrix = new int[vertex.length][vertex.length];
final int N = 65535;
matrix[0] = new int[] { 0, 5, 7, N, N, N, 2 };
matrix[1] = new int[] { 5, 0, N, 9, N, N, 3 };
matrix[2] = new int[] { 7, N, 0, N, 8, N, N };
matrix[3] = new int[] { N, 9, N, 0, N, 4, N };
matrix[4] = new int[] { N, N, 8, N, 0, 5, 4 };
matrix[5] = new int[] { N, N, N, 4, 5, 0, 6 };
matrix[6] = new int[] { 2, 3, N, N, 4, 6, 0 };
//创建 Graph 对象
Graph graph = new Graph(vertex.length, matrix, vertex);
graph.floyd();
graph.show();
}
}
// 创建图
class Graph{
private char[] vertex;// 顶点数组
private int[][] dis;// 保存从各个顶点出发到其他顶点的距离,最后的接过,也是保留在数组中
private int[][] pre;// 保存目标顶点的前驱顶点
/**
*
* @param length 大小
* @param matrix 邻接矩阵
* @param vertex 顶点数组
*/
public Graph(int length,int[][] matrix,char[] vertex) {
this.vertex = vertex;
this.dis = matrix;
this.pre = new int[length][length];
// 对pre数组初始化,存放的是前驱结点的下标
for (int i = 0; i < length; i++) {
Arrays.fill(pre[i], i);
}
}
// 显示dis数组和pre数组
public void show(){
//为了显示便于阅读,我们优化一下输出
char[] vertex = { 'A', 'B', 'C', 'D', 'E', 'F', 'G' };
for (int k = 0; k < dis.length; k++) {
// 先将pre数组输出的一行
for (int i = 0; i < dis.length; i++) {
System.out.print(vertex[pre[k][i]] + " ");
}
System.out.println();
// 输出dis数组的一行数据
for (int i = 0; i < dis.length; i++) {
System.out.print("("+vertex[k]+"到"+vertex[i]+"的最短路径是" + dis[k][i] + ") ");
}
System.out.println();
System.out.println();
}
}
/**
* 弗洛伊德(Floyd)算法
*/
public void floyd(){
int len=0;// 变量保存距离
//对中间顶点遍历, k 就是中间顶点的下标 [A, B, C, D, E, F, G]
for (int k = 0; k < dis.length; k++) {
//从i顶点开始出发 [A, B, C, D, E, F, G]
for (int i = 0; i < dis.length; i++) {
//到达j顶点 // [A, B, C, D, E, F, G]
for (int j = 0; j < dis.length; j++) {
len = dis[i][k] + dis[k][j];// => 求出从i 顶点出发,经过 k中间顶点,到达 j 顶点距离
if(len < dis[i][j]) {//如果len小于 dis[i][j]
dis[i][j] = len;//更新距离
pre[i][j] = pre[k][j];//更新前驱顶点
}
}
}
}
}
}
马踏棋盘算法


package algorithm.knightTraveledAround;
import java.awt.*;
import java.util.ArrayList;
import java.util.Comparator;
/**
* 马踏棋盘游戏
*/
public class KnightTraveledAround {
private static int x; // 棋盘行
private static int y; // 棋盘列
// 创建一个数组,标记棋盘各个位置是否被访问
private static boolean visited[];
// 使用一个属性,标记是否棋盘的所有位置都被访问
private static boolean finished;// true 表示成功
public static void main(String[] args) {
System.out.println("骑士周游算法,开始运行~~");
//测试骑士周游算法是否正确
x = 8;
y = 8;
int row = 1; //马儿初始位置的行,从1开始编号
int column = 1; //马儿初始位置的列,从1开始编号
//创建棋盘
int[][] chessboard = new int[x][y];
visited = new boolean[x * y];//初始值都是false
//测试一下耗时
long start = System.currentTimeMillis();
traversalChessboard(chessboard, row - 1, column - 1, 1);
long end = System.currentTimeMillis();
System.out.println("共耗时: " + (end - start) + " 毫秒");
//输出棋盘的最后情况
for(int[] rows : chessboard) {
for(int step: rows) {
System.out.print(step + "\t");
}
System.out.println();
}
}
/**
* 完成骑士周游问题的算法
*
* @param chessboard 棋盘
* @param row 马儿当前的位置的行 从0开始
* @param column 马儿当前的位置的列 从0开始
* @param step 是第几步 ,初始位置就是第1步
*/
public static void traversalChessboard(int[][] chessboard, int row, int column, int step) {
chessboard[row][column] = step;
visited[row * x + column] = true;// 标记当前位置已经被访问
// 获取当前位置可以走的下一位置的集合
ArrayList<Point> ps = next(new Point(column, row));
//对ps进行排序,排序的规则就是对ps的所有的Point对象的下一步的位置的数目,进行非递减排序
sort(ps);
// 遍历ps
while (!ps.isEmpty()) {
Point p = ps.remove(0);// 取出下一个可以走的位置
// 判断该点是否被访问
if (!visited[p.y * x + p.x]) {//说明还没被访问过
traversalChessboard(chessboard, p.y, p.x, step + 1);
}
}
//判断马儿是否完成了任务,使用 step 和应该走的步数比较 ,
//如果没有达到数量,则表示没有完成任务,将整个棋盘置0
//说明: step < X * Y 成立的情况有两种
//1. 棋盘到目前位置,仍然没有走完
//2. 棋盘处于一个回溯过程
if(step < x * y && !finished ) {
chessboard[row][column] = 0;
visited[row * x + column] = false;
} else {
finished = true;
}
}
/**
* 功能根据当前位置计算马儿能走哪些位置,并放入到一个集合中最多有八个位置
*
* @param curPoint
* @return
*/
public static ArrayList<Point> next(Point curPoint) {
ArrayList<Point> ps = new ArrayList<>();
// 创建一个point
Point p1 = new Point();
//表示马儿可以走5这个位置
if ((p1.x = curPoint.x - 2) >= 0 && (p1.y = curPoint.y - 1) >= 0) {
ps.add(new Point(p1));
}
//判断马儿可以走6这个位置
if ((p1.x = curPoint.x - 1) >= 0 && (p1.y = curPoint.y - 2) >= 0) {
ps.add(new Point(p1));
}
//判断马儿可以走7这个位置
if ((p1.x = curPoint.x + 1) < x && (p1.y = curPoint.y - 2) >= 0) {
ps.add(new Point(p1));
}
//判断马儿可以走0这个位置
if ((p1.x = curPoint.x + 2) < x && (p1.y = curPoint.y - 1) >= 0) {
ps.add(new Point(p1));
}
//判断马儿可以走1这个位置
if ((p1.x = curPoint.x + 2) < x && (p1.y = curPoint.y + 1) < y) {
ps.add(new Point(p1));
}
//判断马儿可以走2这个位置
if ((p1.x = curPoint.x + 1) < x && (p1.y = curPoint.y + 2) < y) {
ps.add(new Point(p1));
}
//判断马儿可以走3这个位置
if ((p1.x = curPoint.x - 1) >= 0 && (p1.y = curPoint.y + 2) < y) {
ps.add(new Point(p1));
}
//判断马儿可以走4这个位置
if ((p1.x = curPoint.x - 2) >= 0 && (p1.y = curPoint.y + 1) < y) {
ps.add(new Point(p1));
}
return ps;
}
//根据当前这个一步的所有的下一步的选择位置,进行非递减排序, 减少回溯的次数
public static void sort(ArrayList<Point> ps){
ps.sort(new Comparator<Point>() {
@Override
public int compare(Point o1, Point o2) {
// 获取o1的下一步的所有位置个数
int count1 = next(o1).size();
// 获取o2的下一步的所有位置个数
int count2 = next(o2).size();
if(count1 < count2){
return -1;
}else if ( count1 == count2){
return 0;
}else{
return 1;
}
}
});
}
}
}
//判断马儿可以走2这个位置
if ((p1.x = curPoint.x + 1) < x && (p1.y = curPoint.y + 2) < y) {
ps.add(new Point(p1));
}
//判断马儿可以走3这个位置
if ((p1.x = curPoint.x - 1) >= 0 && (p1.y = curPoint.y + 2) < y) {
ps.add(new Point(p1));
}
//判断马儿可以走4这个位置
if ((p1.x = curPoint.x - 2) >= 0 && (p1.y = curPoint.y + 1) < y) {
ps.add(new Point(p1));
}
return ps;
}
//根据当前这个一步的所有的下一步的选择位置,进行非递减排序, 减少回溯的次数
public static void sort(ArrayList<Point> ps){
ps.sort(new Comparator<Point>() {
@Override
public int compare(Point o1, Point o2) {
// 获取o1的下一步的所有位置个数
int count1 = next(o1).size();
// 获取o2的下一步的所有位置个数
int count2 = next(o2).size();
if(count1 < count2){
return -1;
}else if ( count1 == count2){
return 0;
}else{
return 1;
}
}
});
}
}
本文详细介绍了多种算法的实现,包括二分查找、汉诺塔回归、动态规划求解0-1背包问题、KMP字符串匹配、普里姆构建最小生成树、迪杰斯特拉求最短路径以及弗洛伊德算法。这些算法在程序员日常工作中有着广泛应用,对于理解算法思想和提高编程能力大有裨益。
1611

被折叠的 条评论
为什么被折叠?



