产品思维分享课 | 围绕长视频的社区建设

从社区的梦想说起

大部分产品通过提供工具能力和内容来满足用户的刚需。但用户都有一个消费周期,ta消费完想看的内容或者功能,一定时期内就不再需要这个产品了。因此很多产品都有一个社区梦——如果有一个社区,社区里有用户喜欢的人和内容,那用户就会时时刻刻想着来逛一下,那么产品的天频、留存、活跃等都能得到保障。这是围城的一端。

在围城的另一端,很多社区产品其实也并不轻松,因为社区的核心——社区氛围和社区调性其实是特别虚无的,所以产品一定要提供一些刚需的东西给到用户。因此我们会看到一些特别优秀的社区产品通过社区去提供一个工具能力,形成一个工具刚需,从而留住用户,比如“有问题就上知乎”。 

我们的日常其实就是在这围城两端来回思考。

社区的核心

爱奇艺是工具、是播放器、是内容、是长视频,我们很想要有一个社区。

我们希望围绕IP去提升用户的规模,也就是关注活跃和留存。对应地,首先,我们需要通过个性化来加强视频内容的分发效率。其次,我们需要围绕视频去做互动,包括弹幕、评论等。我们可以认为互动是一个社区的起点,互动通向人,人通向社区和社交,而社区就是我们现阶段努力尝试的一个方向。

一个万能公式:社区的核心=用户+内容+平台机制

爱奇艺的用户:大部分儿童和老年用户其实不是爱奇艺的社区用户,因为他们可能没法很好地完成打字,也没有具体的社区诉求。我们认为小学二三年级到三十来岁是我们核心的社区用户人群。

爱奇艺的内容:爱奇艺社区的内容载体相对比较丰富,从最基础的评论、弹幕到话题、圈子、帖子,该有的社区内容都有;从属性来看,图片、视频、文字、图文、语音等也都存在。

爱奇艺的平台机制:是最难的,也就是什么样的内容是被允许的,什么样的内容是被鼓励的,什么样的内容是被禁止的。

起点:围绕视频的互动

评论、弹幕是爱奇艺社区的起点,因为这是在用户使用爱奇艺的路径里必然(或大概率)不会错过的两个东西,先说弹幕:

弹幕的旅程

惊喜与惊吓:爱奇艺在4年前首次上线了弹幕,是充满惊喜同时也不乏惊吓的过程。惊喜的是虽然当时的弹幕版本粗糙、性能不佳、卡顿,但仍然有20%、30%的用户开启使用弹幕功能;惊吓的是我们的弹幕内容质量奇低,弹幕里充斥着大量“1、1;2、2;3、3;哈哈;呵呵”这样的内容。一是因为爱奇艺有非常多偷玩大人账号的儿童用户,他们知道怎么发内容,但不知道该发什么内容;二是爱奇艺的用户圈层过于复杂,我们不像b站一样要求用户答完题才能发弹幕,因为很难去设立问卷里该问什么问题,也就无法对用户做很多的前置判断。

原谅色:弹幕团队当时做了一个特别有特色的设定——弹幕的颜色是我们的品牌色绿色,当时用户开玩笑说弹幕发出来都是原谅色。

弹幕设置:弹幕团队接来下很长时间里都在细抠体验,包括颜色(我们最后还是把弹幕改成了白色字体、黑色描边这样比较标准通用的设定)、密度、速度、高度等设置。尤其是默认的设置也历经了很多考量,比如 b站默认是满屏弹幕,而我们觉得爱奇艺更适合默认3行到4行左右的弹幕。

分发规则:爱奇艺在反垃圾方面最初做得非常严格,比如刚刚提到的“1、1;2、2;3、3;呵呵”这些内容,在b站上是能够被分发出来的,因为平台有一个前置的生态管理,而爱奇艺没有,所以我们只能选择不分发;和反垃圾类似,早期爱奇艺的分发策略会限制短弹幕的出现,现在已经放开了。

然后在下一个阶段,爱奇艺也逐渐开始找到自己的特点,比如:

分频道设置:爱奇艺的弹幕开关是分频道来记忆的,这样做的平台不太多。比如看电影时,用户希望有沉浸式的体验,弹幕在电影频道被关闭后,在电视剧频道下仍然默认打开,并且弹幕行数可以稍微少一些,因为用户还是更关注剧情。在综艺频道,用户喜欢热闹,那就让弹幕全部放开,这个从结果上来看是非常有效的一个设置方式。

反剧透:从网上舆情来看,弹幕剧透是爱奇艺用户厌恶之最,所以弹幕防剧透也是我们着力在做和要做的事情。我们主要从两个方面来做弹幕反剧透:举报机制和算法识别。举报机制作为一个产品路径上的问题相对比较容易,但算法识别非常难,大部分推荐算法、或各种算法模型是基于反馈来训练的,需要不停地有反馈去促进该算法优化。但是我们没有系统的剧透反馈机制,所以爱奇艺结合了非常多产品规则去做算法识别,比如某用户已经看过某片段了,但又返回之前的剧情点去发送弹幕,就可能会被识别为有剧透风险。

克制,也就是不做什么,这对产品来说还是有一些压力的。特别是当同类视频平台的一些我们没有做的功能得到内部同事和外部用户的不错反馈时,克制就显得尤为重要。

如:不做“+1”和简单的快捷发布:“+1”是点击后发送一模一样的弹幕。快捷发布是有默认设置的几个弹幕词供用户选择,点击后可进行快速发布。“+1”和快捷发布,降低了用户的发布门槛,带来的更多是数据导向上的提升,即能够快速地提升发布量,但并没有真正意义上地解决用户想发弹幕时可能遇到的输入体验不佳的问题,而我们是通过全屏模式下的语音发布来解决这个问题的。

弹幕和评论,一样的解决思路

评论和弹幕这两者的区别到底是什么?在很多海外优秀产品包括YouTube没有弹幕功能的前提下,我们是否可以摒弃弹幕功能?从实际数据来看,弹幕的用户量又远大于评论,那我们是否可以摒弃评论功能?我个人的答案都是否定的,我认为弹幕和评论都是有很清晰地可以映射到现实场景中的存在:弹幕就好像和家人在看综艺时随口发出的感叹,它和剧情的时间点强关联,在观看过程中产生,也在观看过程中以弹幕的形式留下;评论是看完一部电影,心中久久不能平静,决定写一段作文来表达心情和思考,并且希望别人来回复、进行交流,或者点个赞。

这两者的用户场景有很大差异,但在产品层面,大体的策略和思路还是比较接近的,幻灯片上罗列了一些我们做弹幕和评论的策略。可以看到,我们在产品层面会更关注消费而非生产,也就是如何让用户看到更多的弹幕、评论,如何让用户观看体验更好,以此为出发点去制定展示优化策略以及提升内容质量。我们不会做特别多去逼迫用户发评论和弹幕。因为从一个内容的消费到ugc内容的生产,一定是存在一个相对健康的比例。如果比例过高,可能是采用了一些过分的激励手段;比例过低,可能是发布流程、发布工具本身体验上有严重的问题。如果这两者都不存在,就没有必要过分在产品层面去激励用户生产了。

如何真正地围绕IP来做社区互动

上述是围绕功能层面来说的。但是功能只是基础,今年我们开始发力去跟内容做深层的结合,也就是围绕IP去做的强运营的互动方案。

案例一:今年的爆款电视剧《爱情公寓5》

第一,弹幕造梗节。逻辑非常简单——在一定周期内根据弹幕点赞量排序生成榜单,对榜单上的用户进行奖励,并加入了一些商业化的动作。

第二,弹幕红包雨。通过和节目内容的时间点相结合,在美嘉生宝宝的那一集,又恰逢春节期间,我们做了红包雨的特效,用户观看这一集时打开弹幕就会收到红包。

第三,评论话题。话题的运营难度很高,难点在于话题到底能不能击中用户的点。我认为《爱情公寓5》在大结局时的情感话题打得特别好,因为爱情公寓承载了很多人的青春。通过这类情感话题和用户进行互动,是符合用户诉求的。

就结果来看是令人满意的。弹幕造梗节在当时产生的弹幕量达到了全站弹幕的20+%,弹幕红包雨的参与率也达到了整体观看用户的20+%~30+%。

第四, 明星聊天室。核心逻辑就是请明星陪观众一起看剧集。明星聊天室同时支持语音和文字,但不支持视频露出;在横屏的画面左边是剧集的播放器,右边上半部分是置顶的明星发出的聊天内容,下半部分是用户发出的聊天内容,明星可以去翻看用户的内容并翻牌用户。最早我们是想做成明星直播,但一,考虑到成本,我们的产品最后退化到了文字和语音这样的形式;二,从用户路径来看,如果让用户退出横屏播放再进入一个竖屏直播间,从体验上来说也非常不顺畅。而我们的明星聊天室和当前在看的视频之间几乎是无缝衔接,这就叫做“子母屏交互”。爱奇艺接下来也会在很多场景中沿用这种交互体验。

从数据结果来看,《爱情公寓5》明星聊天室的用户互动还是非常踊跃的。

案例二:《青春有你2》

(以下简称《青你2》)

《青你2》本身就是一个非常强互动的节目,用户可以全程参与,所以我们在互动上做了很多与我们社区能力的串联。比如话题,完全跟着节目环节走。

两个关键活动:

  1. 为ta选择考核曲目。在公布考核题目的某集发布了该活动:用户可以为喜欢的练习生挑选歌曲和分组,并发表一条打call语(助力宣言)作为一条评论。这条评论会自动分发至对应练习生名下的话题里,形成话题串联。最终舞台助力也做了类似的活动,该活动产生的评论量,相当于一个热门剧集整个生命周期内产生的东西。

  2. 分享页面。粉丝之间的传播力是非常强的。从数据来看,分享次数远大于该页面的访问数。

面对这些意外的数据,团队内部进行了冷静且持续的思考:这些内容对粉丝来说肯定是有价值的,那么对于其它用户来说是否有价值?如何让它对其它用户变得更有价值?

互动+应援

现在的粉丝群体和10年前(甚至更久)不一样了。以前的粉丝喜欢一个偶像,更多是把ta作为英雄符号去崇拜,希望有一天自己能够成为像ta一样能力很强的人;现在的应援是粉丝希望自己的idol能够获得更多资源,从而能成长为粉丝希望ta成为的样子。

基于现在这种普遍的粉丝心态,我们做了一个应援的活动:为练习生赢取福利,即明星聊天室的曝光时间。这就成为了很多粉丝愿意为idol争取的资源。只要带上idol的名字发弹幕或评论,就会被统计到榜单里。最终会基于榜单去邀请选手进入聊天室进行曝光,她也会享受到一些对应的活动宣发。

《青你2》的聊天室数据显示,跟活动串联上的聊天室互动数据较之前翻了10倍,因为粉丝会觉得这次聊天室的曝光机会是自己为idol争取来的。最终《青你2》的热度上了9000,其中互动的功劳巨大,并且我们的互动体系也得到了饭圈的认可。

也许你还想看

学术派 | 基于AI的视频精彩度分析技术

干货 | 奇秀直播连麦技术探索

扫一扫下方二维码,更多精彩内容陪伴你!