1.基本介绍
Celery 是由Python 编写的简单,灵活,可靠的用来处理大量信息的分布式系统,它同时提供操作和维护分布式系统所需的工具。Celery 专注于实时任务处理,支持任务调度。
简单的说,它就是一个分布式队列的管理工具,用celery提供的接口快速实现并管理一个分布式的任务队列。
有一点我们需要搞清楚,Celery 本身并不是任务队列,它是一个分布式队列的管理工具,Celery封装好了操作常见任务队列的各种操作,比如说从监听某个任务队列并从该队列中拿到数据进行消费。
2.使用场景
它可以让任务的执行完全脱离主程序,甚至可以被分配到其他主机上运行。我们通常使用它来实现异步任务(async task)和定时任务(crontab)。
- 异步任务: 将耗时操作任务提交给
Celery去异步执行,比如发送短信/邮件、消息推送、音视频处理等等 - 定时任务: 定时执行某件事情,比如每天数据统计
3.工作流程和组成部分
这里用一张图片说明下:

Celery的架构由三部分组成,消息中间件(message broker),任务执行单元(worker)和任务执行结果存储(task result store)组成。
消息中间件
Celery本身不提供消息服务,但是可以方便的和第三方提供的消息中间件集成。包括RabbitMQ, Redis等等,官方推荐用rabbitMQ,因为它持久稳定。
任务执行单元
Worker是Celery提供的任务执行的单元,worker并发的运行在分布式的系统节点中。
任务结果存储
Task result store用来存储Worker执行的任务的结果,Celery支持以不同方式存储任务的结果,包括AMQP, redis等
另外, Celery还支持不同的并发和序列化的手段。
- 并发:Prefork, Eventlet, gevent, threads/single threaded
- 序列化:pickle, json, yaml, msgpack. zlib, bzip2 compression, Cryptographic message signing 等等
先安装模块
pip install celery
pip install redis
4.Celery执行异步任务
4.1 基础使用
这里项目结构如下:

第一步:先创建celery相关配置配置celery_object.py
import celery
# 执行如下命令: celery -A celery_object worker -l info
backend = "redis://127.0.0.1:6379/4" # 设置redis的4号数据库来存放结果
broker = "redis://127.0.0.1:6379/5" # 设置redis的5号数据库存放消息中间件
celery_app = celery.Celery(
"celery_demo",
backend=backend,
broker=broker,
include=[
"celery_task",
],
)
celery_app.conf.task_serializer = "json"
celery_app.conf.result_serializer = "json"
celery_app.conf.accept_content = ["json"]
celery_app.conf.timezone = "Asia/Shanghai" # 时区
celery_app.conf.enable_utc = False # 是否使用UTC
参数说明:
- backend 就是异步任务执行完成以后,结果存放的地方。
- broker 就是具体执行任务的工作节点。
- celery.Celery()方法是实例化一个celery对象。
- include需要把celery所有的task都写入到列表中。
第二步:创建任务相关的文件celery_task.py
import time
from celery_object import celery_app
@celery_app.task
def send_email(name):
print

最低0.47元/天 解锁文章
3059

被折叠的 条评论
为什么被折叠?



