题目描述
给出非负整数数组 A ,返回两个非重叠(连续)子数组中元素的最大和,子数组的长度分别为 L 和 M。(这里需要澄清的是,长为 L 的子数组可以出现在长为 M 的子数组之前或之后。)
从形式上看,返回最大的 V,而 V = (A[i] + A[i+1] + … + A[i+L-1]) + (A[j] + A[j+1] + … + A[j+M-1]) 并满足下列条件之一:
0 <= i < i + L - 1 < j < j + M - 1 < A.length, 或
0 <= j < j + M - 1 < i < i + L - 1 < A.length.
示例 1:
输入:A = [0,6,5,2,2,5,1,9,4], L = 1, M = 2
输出:20
解释:子数组的一种选择中,[9] 长度为 1,[6,5] 长度为 2。
示例 2:
输入:A = [3,8,1,3,2,1,8,9,0], L = 3, M = 2
输出:29
解释:子数组的一种选择中,[3,8,1] 长度为 3,[8,9] 长度为 2。
示例 3:
输入:A = [2,1,5,6,0,9,5,0,3,8], L = 4, M = 3
输出:31
解释:子数组的一种选择中,[5,6,0,9] 长度为 4,[0,3,8] 长度为 3。
提示:
L >= 1
M >= 1
L + M <= A.length <= 1000
0 <= A[i] <= 1000
解题思路
- 题目要求两个子数组不能重叠
- 此题两个子数组不能单独寻找,不能先找一个最大的子数组,再找另一个最大子数组,须同时进行。
- 用双重循环遍历:先拿出一个连续子数组,再从剩余的中拿出另一个连续子数组,将两个数组相加,如此循环,再与下一对子数组对比,取最大值。
- 有一点值得
注意:外层循环次数比内层循环次数少,能够减少运行时间,所以,需要对两个子数组的长度进行判断。
代码
class Solution:
def maxSumTwoNoOverlap(self, A: List[int], L: int, M: int) -> int:
Max = 0
if L<M:
L, M = M, L
# L大,则外循环次数少
for i in range(len(A)-L+1):
s1 = sum(A[i:i+L])
for j in range(i-M+1):
s2 = sum(A[j:j+M])
Max = max(Max, s1+s2)
for j in range(i+L, len(A)-M+1):
s2 = sum(A[j:j+M])
Max = max(Max, s1+s2)
return Max
923

被折叠的 条评论
为什么被折叠?



