最近在和道友的交流中遇到了这样一个问题,怎么证明python的列表索引运算符是否为O(1)呢?
在这里想和大家分享下这个到底应该怎么证明?
想必大家都知道算法的复杂度分为时间复杂度和空间复杂度,我们这里以时间复杂度为例来解释下这个问题。
也就是我们要证明列表索引时,无论列表是什么样,无论执行什么样的列表索引操作,算法的执行时间是恒定的,这样我们才能称之为具有O(1)的时间复杂度
下面我们来设计下如何证明
1 首先我们设计三个list,其长度分别为10,10000,100000
2分别从三个列表中取索引为0和索引为最大的值,并且获得索引取值的所消耗的时间
3 每个列表俩次索引操作,得到俩个算法消耗时间,
4 分析6个消耗时间是否一致
1 列表长度为10
import datetime
list1 = list()
for i in range(10):
list1.append(i)
list1_s_time = datetime.datetime.now()
t = list1[0]
list1_e_time = datetime.datetime.now()
list1_s1_time = datetime.datetime.now()
t2 = list1[9]
list1_e1_time = datetime.datetime.now()
#取微秒
print((list1_e1_time - list1_s1_time).microseconds)
print((list1_e_time - list1_s_time).microseconds)
# 所耗时间
0
0
列表长度为1000
list1 = list()
for i in range(10000):
list1.append(i)
list1_s_time = datetime.datetime.now()
t = list1[0]
list1_e_time = datetime.datetime.now()
list1_s1_time = datetime.datetime.now()
t2 = list1[9]
list1_e1_time = datetime.datetime.now()
#取其微秒
print((list1_e1_time - list1_s1_time).microseconds)
print((list1_e_time - list1_s_time).microseconds)
#所耗时间
0
0
列表长度为100000
list1 = list()
for i in range(100000):
list1.append(i)
list1_s_time = datetime.datetime.now()
t = list1[0]
list1_e_time = datetime.datetime.now()
list1_s1_time = datetime.datetime.now()
t2 = list1[9]
list1_e1_time = datetime.datetime.now()
#取其微秒
print((list1_e1_time - list1_s1_time).microseconds)
print((list1_e_time - list1_s_time).microseconds)
# 所耗时间
0
0
总结 : 通过以上证明,我们所看到时间都为0,当然代码运行肯定会消耗时间的,说明列表索引操作消耗的时间比微秒还小,如果时间还可以更精确的,我们就可以看到具体的损耗时间了。在列表中长度是不端递增的,但是我们可以看到索引操作消耗基本上是恒定的。
扩展:同样的代码,相同的环境,每次执行消耗的时间有细微差别,其原因是:
1)与操作系统的调度有关
2)现在的CPU支持动态调频
个人技术公众号: