基本概念
- 傅里叶变换:让我们知道信号中的频率成分信息
- 短时傅里叶变换:加窗的傅里叶变换,窗长是固定的
- 小波变换:小波对应着能量有限的信号,时域能量有限,频域带通滤波, 使用可变的尺度因子,实现了窗长的变化,尺度因子与时间平移因子乘积为常数,使得时域和频域之间取得平衡。
- 等效频率
- 中心频率:基函数的频率正是其中心频率的值

连续小波变换
基函数及理论
对于加窗傅立叶变换让人头疼的就是窗口的大小问题,如果我们让窗口的大小可以改变,不就完美了吗?答案是肯定的,小波就是基于这个思路,但是不同的是。STFT是给信号加窗,分段做FFT;而小波变换并没有采用窗的思想,更没有做傅里叶变换。小波直接把傅里叶变换的基给换了——将无限长的三角函数基换成了有限长的会衰减的小波基。这样不仅能够获取频率,还可以定位到时间了~
这个基函数会伸缩、会*移(其实是两个正交基的分解)。**缩得窄&
本文介绍了小波变换的基本概念,作为傅里叶变换的拓展,小波变换通过可变尺度因子实现时频局部化。讨论了连续小波变换的基函数、尺度因子与时间平移,以及小波系数的含义,揭示了如何从小波系数中解析信号的频率成分。
订阅专栏 解锁全文
5563

被折叠的 条评论
为什么被折叠?



