剑歌与舞的博客

个人学习过程中的一些思考总结

元素和是K的倍数的子串的最大长度

链接:https://www.nowcoder.com/acm/contest/91/L
来源:牛客网
代码参考转载地址:https://blog.csdn.net/yoomiky/article/details/77776359
时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 131072K,其他语言262144K
64bit IO Format: %lld

题目描述

给一个数组 a,长度为 n,若某个子序列中的和为 K 的倍数,那么这个序列被称为“K 序列”。现在要你 对数组 a 求出最长的子序列的长度,满足这个序列是 K 序列。 

输入描述:

第一行为两个整数 n, K, 以空格分隔,第二行为 n 个整数,表示 a[1] ∼ a[n],1 ≤ n ≤ 105 , 1 ≤ a[i] ≤ 109 , 1 ≤ nK ≤ 107

输出描述:

输出一个整数表示最长子序列的长度 m


PS:题或者数据有问题,子序列不是子串,但是用求最长子串的算法依然可以过。


#include<iostream>
#include<vector>
using namespace std;
/*思路,扫描序列对K取余求和,记录每个余数第一次出现的位置。
 *当该余数重复出现时,与第一次出现的位置做差求长度。
 *余数0出现的第一个位置为0*/
int Len(vector<int> arr, int N, int K)
{
    int result = 0;
    vector<int> Fis(K);
    for (int i = 0; i < K; i++)
        Fis[i] = -1;

    Fis[0] = 0;//小坑,注意细节

    int mod = 0;
    for (int i = 0; i < N; i++)
    {
        mod = (mod + arr[i]) % K;
        if (Fis[mod] == -1)//记录该余数第一次出现的位置
            Fis[mod] = i+1;//按照规律是不需要加1的。
        else
            result = result < (i+1 - Fis[mod]) ? (i+1 - Fis[mod]) : result;//当相同余数出现时,做差求长度,保留最大子串长度。
    }

    return result;
}

int main()
{
    std::ios::sync_with_stdio(false);
    int N,K;
    cin>>N>>K;
    vector<int> arr(N);
    for (int i = 0; i < N; i++)
    {
        cin>>arr[i];
    }
    cout << Len(arr, N, K)<<endl;

    return 0;
}

阅读更多
文章标签: 同余相减
个人分类: 竞赛
上一篇广搜之逃离迷宫
下一篇线性扫描之Wasserstein
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭