大话动态规划

大话动态规划


       动态规划在《算法导论》这本书中谈了很多,首先介绍了2个例子问题,钢条切割和矩阵链乘法,动态规划说白了就是区别于分治法的另一种优化问题的思想,分治法中经常有重复性计算子问题的现象,而动态规划恰恰避免了这种子问题重叠现象,,它目的在于解决最优化问题。


在书中给了我们4个步骤

  1. 刻画一个最优解的结构
  2. 递归地定义最优解的值
  3. 计算最优解的值
  4. 利用计算出的信息构造一个最优解

      在钢条切割中,我们按照上面4个步骤走,首先考虑的问题是怎么切,从哪切,书中说一个n英寸的钢条共有2^{n-1}次切割方案,如果用递归的话,每次 切一块或两块都需要重复计算,反复求解相同问题,效率太低。

     而使用动态规划的话,有两种方法,一种是自底向上方法,另一种是带备忘录的方法,这两种方法类似,目的都是避免了重复计算,区别就是自底向上方法是将子问题按照从小到大的顺序排序了,先算最小的,大的再算的话就直接用小的算出来的结果就行,不需要重复计算,而带备忘录的方法是按自然的顺序去算,不过过程中会保存每个子问题的解,当后续需要用的时候,做一个判断,如果之前算过就去那个保存了的地方拿,如果没有就算。 最后一步重构解说的是之前计算最优解后并没有给出具体在哪个位置切割,重构解时在原来计算了最大收益的后边再保存一个最优解对应的第一段钢条的切割长度。

    在矩阵链乘法中,首先我们得明白是干什么的,矩阵相乘满足结合律,不管咋算结果一样,现在我们就是在结果一样的大前提下稿研究,因为矩阵这东西在中间计算的时候,先后顺序变了,乘法的 次数是不一样的,我们的目的就是找到一个最优的解,即乘法次数最少的情况。

    这里还是按照四个步骤走一遍,因为书上也是这么走的,这里简化一样,说上表达的我感觉有点繁琐,看的看的容易忘掉这个变量是干啥的。首先我们得求得就是最优解的结构特征了,书上说了一种“剪切-复制”的方法,说白了就是先假定分割点在k和k+1之间,注意这里是假定,然后矩阵链此时被分成了2部分,我们对前半部分采用独立求解,如果不呢,书上说,如果不就讲前半部分的最优解带入到大的链中即带入到i-j这个中,代替原来的解,显示短的链所得到的的代价肯定是小于长链的,现在就出现了两个最优解,相矛盾了,所以必须得独立求解,即我们在构造一个矩阵链乘法问题的最优解时,将问题划分成两个子问题,独立的求解子问题的最优解,之后再往一起合。

      步骤2需要递归的求解,即现在我们需要分别的去求子问题的解,书中定义了一个m数组表示计算矩阵A所需标量乘法次数的最小值,记住是最小值,于是我们可以得到这样一个核心的递归式:m[i,j]=m[i,k]+m[k+1,j]+p_{i-1}p_{k}p_{j},此递归式假定最优分割点k是已知的,这里i<j。最优解要么在左,要么在右,要么直接求,只有这三种,就像那句话说的,原问题的最优解是由子问题的最优解组合而成。

      步骤3中我们就开始用递归式去求解最优代价,书中介绍了自底向上表格法求解代价。核心就是那个公示,理解后,根据这个递归的算就行,就是比大小,选最小。

    步骤4是构造最优解,与前面钢条切割同样的道理,递归算法只是求出了计算矩阵链乘积所需要的的最少标量乘法运算次数,并没有直接指出如何算,就是如何分的问题,这里加入s数组记录那个分割点,介于k-k+1之间的那个点。


动态规划原理

     动态规划两个重要的要素,就是核心点,即最优子结构和子问题重叠。每回考虑问题时,我们可以从原问题是否可以进行划分乘若干个子问题,子问题是否具有最优结构,可以独立求解,最后组成大问题的最优解。

 

标题“51单片机通过MPU6050-DMP获取姿态角例程”解析 “51单片机通过MPU6050-DMP获取姿态角例程”是一个基于51系列单片机(一种常见的8位微控制器)的程序示例,用于读取MPU6050传感器的数据,并通过其内置的数字运动处理器(DMP)计算设备的姿态角(如倾斜角度、旋转角度等)。MPU6050是一款集成三轴加速度计和三轴陀螺仪的六自由度传感器,广泛应用于运动控制和姿态检测领域。该例程利用MPU6050的DMP功能,由DMP处理复杂的运动学算法,例如姿态融合,将加速度计和陀螺仪的数据进行整合,从而提供稳定且实时的姿态估计,减轻主控MCU的计算负担。最终,姿态角数据通过LCD1602显示屏以字符形式可视化展示,为用户提供直观的反馈。 从标签“51单片机 6050”可知,该项目主要涉及51单片机和MPU6050传感器这两个关键硬件组件。51单片机基于8051内核,因编程简单、成本低而被广泛应用;MPU6050作为惯性测量单元(IMU),可测量设备的线性和角速度。文件名“51-DMP-NET”可能表示这是一个与51单片机及DMP相关的网络资源或代码库,其中可能包含C语言等适合51单片机的编程语言的源代码、配置文件、用户手册、示例程序,以及可能的调试工具或IDE项目文件。 实现该项目需以下步骤:首先是硬件连接,将51单片机与MPU6050通过I2C接口正确连接,同时将LCD1602连接到51单片机的串行数据线和控制线上;接着是初始化设置,配置51单片机的I/O端口,初始化I2C通信协议,设置MPU6050的工作模式和数据输出速率;然后是DMP配置,启用MPU6050的DMP功能,加载预编译的DMP固件,并设置DMP输出数据的中断;之后是数据读取,通过中断服务程序从DMP接收姿态角数据,数据通常以四元数或欧拉角形式呈现;再接着是数据显示,将姿态角数据转换为可读的度数格
MathorCup高校数学建模挑战赛是一项旨在提升学生数学应用、创新和团队协作能力的年度竞赛。参赛团队需在规定时间内解决实际问题,运用数学建模方法进行分析并提出解决方案。2021年第十一届比赛的D题就是一个典型例子。 MATLAB是解决这类问题的常用工具。它是一款强大的数值计算和编程软件,广泛应用于数学建模、数据分析和科学计算。MATLAB拥有丰富的函数库,涵盖线性代数、统计分析、优化算法、信号处理等多种数学操作,方便参赛者构建模型和实现算法。 在提供的文件列表中,有几个关键文件: d题论文(1).docx:这可能是参赛队伍对D题的解答报告,详细记录了他们对问题的理解、建模过程、求解方法和结果分析。 D_1.m、ratio.m、importfile.m、Untitled.m、changf.m、pailiezuhe.m、huitu.m:这些是MATLAB源代码文件,每个文件可能对应一个特定的计算步骤或功能。例如: D_1.m 可能是主要的建模代码; ratio.m 可能用于计算某种比例或比率; importfile.m 可能用于导入数据; Untitled.m 可能是未命名的脚本,包含临时或测试代码; changf.m 可能涉及函数变换; pailiezuhe.m 可能与矩阵的排列组合相关; huitu.m 可能用于绘制回路图或流程图。 matlab111.mat:这是一个MATLAB数据文件,存储了变量或矩阵等数据,可能用于后续计算或分析。 D-date.mat:这个文件可能包含与D题相关的特定日期数据,或是模拟过程中用到的时间序列数据。 从这些文件可以推测,参赛队伍可能利用MATLAB完成了数据预处理、模型构建、数值模拟和结果可视化等一系列工作。然而,具体的建模细节和解决方案需要查看解压后的文件内容才能深入了解。 在数学建模过程中,团队需深入理解问题本质,选择合适的数学模
以下是关于三种绘制云图或等高线图算法的介绍: 一、点距离反比插值算法 该算法的核心思想是基于已知数据点的值,计算未知点的值。它认为未知点的值与周围已知点的值相关,且这种关系与距离呈反比。即距离未知点越近的已知点,对未知点值的影响越大。具体来说,先确定未知点周围若干个已知数据点,计算这些已知点到未知点的距离,然后根据距离的倒数对已知点的值进行加权求和,最终得到未知点的值。这种方法简单直观,适用于数据点分布相对均匀的情况,能较好地反映数据在空间上的变化趋势。 二、双线性插值算法 这种算法主要用于处理二维数据的插值问题。它首先将数据点所在的区域划分为一个个小的矩形单元。当需要计算某个未知点的值时,先找到该点所在的矩形单元,然后利用矩形单元四个顶点的已知值进行插值计算。具体过程是先在矩形单元的一对对边上分别进行线性插值,得到两个中间值,再对这两个中间值进行线性插值,最终得到未知点的值。双线性插值能够较为平滑地过渡数据值,特别适合处理图像缩放、地理数据等二维场景中的插值问题,能有效避免插值结果出现明显的突变。 三、面距离反比 + 双线性插值算法 这是一种结合了面距离反比和双线性插值两种方法的算法。它既考虑了数据点所在平面区域对未知点值的影响,又利用了双线性插值的平滑特性。在计算未知点的值时,先根据面距离反比的思想,确定与未知点所在平面区域相关的已知数据点集合,这些点对该平面区域的值有较大影响。然后在这些已知点构成的区域内,采用双线性插值的方法进行进一步的插值计算。这种方法综合了两种算法的优点,既能够较好地反映数据在空间上的整体分布情况,又能保证插值结果的平滑性,适用于对插值精度和数据平滑性要求较高的复杂场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值