- 博客(404)
- 资源 (1)
- 收藏
- 关注
原创 【python|attention】注意力机制代码
every blog every motto: You can do more than you think.0. 前言梳理目前主流的注意力机制代码,目前以pytorch为例。说明: 特征图维度的组织形式为:(batch,channel,height,width)1. 正文1.1 SEBlock 2017考虑通道间的注意力之间的关系,在通道上加入注意力机制论文:https://arxiv.org/abs/1709.01507代码:https://github.com/hujie-frank
2021-06-27 09:31:35 33921 21
原创 【tf.keras.Model】构建模型小结(部分问题未解决)
every blog every motto: You can do more than you think.0. 前言对于构建深度学习网络模型,我们通常有三种方法,分别是:Sequential APIFunctional APISubclassing API说明: 推荐使用functional API.本文主要对有关子类API(tf.keras.Model)构建模型时“两种方法”进行比较分析。注: 为保持文章的完整性,本文仅就部分问题进行探讨,后续问题见下一篇博文。1. 正文
2020-10-27 22:11:58 2890 4
原创 【Tensorflow、Keras】关于Reshape层小结(部分问题未解决)
every blog every motto: We would rather reuse an active dwarf than a sleeping giant.0. 前言reshape层说起来不复杂,就是改变特征图的尺寸,但在实际过程中,却发现了有意思的问题,遂记之。暂未解决。1. 在模型中1.1 Keras的Reshape1.1.1 Keras正常情况代码部分from keras.layers import *input = Input((16, 16, 3))print
2020-06-22 21:09:13 7397 2
原创 【PCL】350A4D40]vtkOpenGLPolyDataMapper:328 WARN| vtkOpenGLPolyDataMapper::SetGeometryShaderCode was
every blog every motto: You can do more than you think.https://blog.csdn.net/weixin_39190382?type=blog350A4D40]vtkOpenGLPolyDataMapper:328 WARN| vtkOpenGLPolyDataMapper::SetGeometryShaderCode was deprecated for VTK 9.0 and will be removed in a future v
2024-07-26 15:26:58 239
原创 【ubuntu】安装(升级)显卡驱动,黑屏|双屏无法使用问题解决方法
ubuntu 安装(升级)显卡驱动,黑屏|双屏无法使用问题解决方法由于项目需要,对显卡驱动进行升级。升级完就黑屏。。。。,双屏也只能显示一个。。。。
2024-07-01 17:24:27 1319
原创 ImportError: cannot import name ‘model_urls‘ from ‘torchvision.models.resnet‘
every blog every motto: You can do more than you think.https://blog.csdn.net/weixin_39190382?type=blog如下代码出现问题:报错:解决办法:
2024-06-15 17:50:06 837
原创 【异常检测】【EfficientAD】论文简单梳理与代码实现
EfficientAD作为较近的一篇异常检测网络,主要还是从S-T网络入手,对齐进行了相关改进。修改特征提取器引入自动编码器hard loss以及惩罚项。
2024-05-31 10:32:16 2011
转载 深度学习架构迎来最强挑战者 KAN,MLP 的时代结束了?
作者通过一个示例(包含变量 x 和 y 的复合函数)来展示网格扩展的效果,说明随着网格点数量的增加,训练损失迅速下降,但测试损失呈现先降后升的 U 形曲线,反映了偏差-方差权衡的问题。(Frank Rosenblatt)在他的著作《Perceptron》中介绍了一个包含输入层、隐藏层(该隐藏层具有随机且不进行学习的权重)以及具有学习连接的输出层的分层网络,如今这被视为 MLP 的雏形,它并不等同于现代意义上具有反向传播能力的 MLP,也未形成深度学习网络的概念。这种设计允许网络更灵活地逼近复杂的函数关系。
2024-05-06 11:03:48 566
原创 【Transformer】detr之loss逐行梳理(四)
detr之loss逐行梳理匹配,预测框和gt框进行匹配计算损失""""""self.num_classes = num_classes # 数据集类别数self.matcher = matcher # HungarianMatcher() 匈牙利算法 二分图匹配self.weight_dict = weight_dict # dict: 18 3x6 6个decoder的损失权重 6*(loss_ce+loss_giou+loss_bbox)
2024-04-26 14:52:27 1408
原创 【分配】linear_sum_assignment函数
分配问题小结,linear_sum_assignment 函数使用的是Jonker-Volgenant algorithm算法。
2024-04-25 14:31:41 2576
原创 【Transformer】Swin梳理
every blog every motto: You can do more than you think.https://blog.csdn.net/weixin_39190382?type=blogswin论文: https://arxiv.org/pdf/2103.14030v1.pdf时间: 2021.3.25作者: Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo网
2024-04-18 09:37:37 324
原创 【机器学习之---数学】随机游走
随机游走定义如下:随机游走Snn≥0Snn≥0为随机过程SnS0x1XnSnS0x1...Xn其中,X1X2X1X2...是独立同分布(i.i.d)随机变量,与S0S_0S0无关。
2024-03-26 10:16:57 2400
原创 【机器学习之---数学】马尔科夫链
马尔科夫链Xt−2Xt−1XtXt−1...Xt−2Xt−1XtXt−1...,那么Xt−1X_{t-1}Xt−1时刻的状态,只与Xt−1X_{t-1}Xt−1时刻的状态有关,与Xt−2X_{t-2}Xt−2时刻的状态无关。
2024-03-26 09:59:44 2351 1
原创 【Transformer】transformer注解
transformer注解在过去的一年里,《Attention is all you need》中的transformer一直萦绕在很多人的脑海里。除了在翻译质量上产生重大改进之外,它还为许多其他NLP任务提供了一种新的架构。论文本身写得很清楚,但传统观点认为很难正确执行。在这篇文章中,我将以逐行实现的形式呈现论文的注释版本。我重新整理并删除了原论文中的一些章节,并在全文中添加了注释。这个文档本身就是一个工作笔记本,应该是一个完全可用的实现(可以在jupyter notebook中运行)。
2024-03-23 21:10:35 907
原创 【经典算法】有趣的算法之---粒子群算法梳理
粒子群算法粒子群算法(Particle Swarm Optimization,PSO)是一种用于解决优化问题的元启发式算法。它通过模拟鸟群或鱼群中的行为来进行优化搜索。在粒子群算法中,问题的潜在解被表示为一群粒子。每个粒子代表一个候选解,并根据其自身的经验和群体的信息进行移动和调整。粒子的位置表示候选解的特征向量,速度表示粒子在搜索空间中的移动方向和速度。粒子群算法广泛应用于各种优化问题,如函数优化、神经网络训练、组合优化等。它是一种简单且易于实现的优化算法,具有全局搜索能力和较好的收敛性。
2024-01-17 16:22:19 9468 3
原创 【经典算法】有趣的算法之---遗传算法梳理
遗传算法是一种基于自然选择和遗传机制的优化算法,因此它通常被用于求解各种最优化问题,例如函数优化、特征选择、图像处理等。将数学中的优化问题,首先通过“编码”将数字编程“0101”类似这种二进制形式(不绝对),然后对其进行变换(“变异”),根据提前指定的“目标函数”(适应度)对这组数学进行筛选,重复这个过程一定次数(“迭代进化”),最终找到最优解遗传算法(Genetic Algorithm,简称GA)受自然进化理论启发的一系列搜索算法,起源于对生物系统所进行的计算机模拟研究,是一种随机全局搜索优化。
2024-01-15 15:36:16 4011
原创 【经典算法】有趣的算法之---蚁群算法梳理
蚁群算法记录蚁群算法(Ant Clony Optimization, ACO)是一种群智能算法,它是由一群无智能或有轻微智能的个体(Agent)通过相互协作而表现出智能行为,从而为求解复杂问题提供了一个新的可能性。蚁群算法最早是由意大利学者Colorni A., Dorigo M. 等于1991年提出。经过20多年的发展,蚁群算法在理论以及应用研究上已经得到巨大的进步。蚂蚁在寻找食物的过程中往往是随机选择路径的,但它们能感知当前地面上的信息素浓度,并倾向于往信息素浓度高的方向行进。
2023-12-28 09:38:23 1828
原创 【RNNsearch】neural machine translation by jointly learning to align and translate阅读与思考
neural machine translation by jointly learning to align and translate阅读与思考作为transformer的前传,同时,作为在nlp中第一篇注意力机制相关文章,还是很有必要一读。本文的主要贡献是打破了此前翻译中encoder-decoder需将句子变换到一个固定的长度,采用自适应方法。arxiv第一版时间为2014年。
2023-12-22 16:11:54 986
MVTec LOCO AD dataset 之 juice-bottle
2024-06-06
机器学习实战:基于Scikit-Learn、Keras和TensorFlow
2023-12-28
Hands-On Deep Learning Architectures with Python Create deep neu
2023-12-28
Hands-On Genetic Algorithms with Python: Applying genetic algori
2023-12-28
蚁群算法matlab版
2023-12-28
蚁群算法python版
2023-12-27
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人