自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

胡侃有料的博客

流水不争先,争的是滔滔不绝

  • 博客(404)
  • 资源 (1)
  • 收藏
  • 关注

原创 【python|attention】注意力机制代码

every blog every motto: You can do more than you think.0. 前言梳理目前主流的注意力机制代码,目前以pytorch为例。说明: 特征图维度的组织形式为:(batch,channel,height,width)1. 正文1.1 SEBlock 2017考虑通道间的注意力之间的关系,在通道上加入注意力机制论文:https://arxiv.org/abs/1709.01507代码:https://github.com/hujie-frank

2021-06-27 09:31:35 33921 21

原创 【tf.keras.Model】构建模型小结(部分问题未解决)

every blog every motto: You can do more than you think.0. 前言对于构建深度学习网络模型,我们通常有三种方法,分别是:Sequential APIFunctional APISubclassing API说明: 推荐使用functional API.本文主要对有关子类API(tf.keras.Model)构建模型时“两种方法”进行比较分析。注: 为保持文章的完整性,本文仅就部分问题进行探讨,后续问题见下一篇博文。1. 正文

2020-10-27 22:11:58 2890 4

原创 【Tensorflow、Keras】关于Reshape层小结(部分问题未解决)

every blog every motto: We would rather reuse an active dwarf than a sleeping giant.0. 前言reshape层说起来不复杂,就是改变特征图的尺寸,但在实际过程中,却发现了有意思的问题,遂记之。暂未解决。1. 在模型中1.1 Keras的Reshape1.1.1 Keras正常情况代码部分from keras.layers import *input = Input((16, 16, 3))print

2020-06-22 21:09:13 7397 2

原创 【torch.quantile】分位数计算

torch.quantile 分位数计算方法。

2024-07-30 09:27:17 1511

原创 【PCL】350A4D40]vtkOpenGLPolyDataMapper:328 WARN| vtkOpenGLPolyDataMapper::SetGeometryShaderCode was

every blog every motto: You can do more than you think.https://blog.csdn.net/weixin_39190382?type=blog350A4D40]vtkOpenGLPolyDataMapper:328 WARN| vtkOpenGLPolyDataMapper::SetGeometryShaderCode was deprecated for VTK 9.0 and will be removed in a future v

2024-07-26 15:26:58 239

原创 【onnx】onnxruntime-gpu无法使用问题

onnxruntime-gpu无法使用。

2024-07-09 15:05:33 2337

原创 【onnx】转换与推理使用

onnx转换与推理使用。

2024-07-09 14:44:53 1033 1

原创 【CUDA|CUDNN】安装

显卡驱动安装参考之前的文章cuda、cudnn 安装。

2024-07-09 14:43:01 1464

原创 【ubuntu】安装(升级)显卡驱动,黑屏|双屏无法使用问题解决方法

ubuntu 安装(升级)显卡驱动,黑屏|双屏无法使用问题解决方法由于项目需要,对显卡驱动进行升级。升级完就黑屏。。。。,双屏也只能显示一个。。。。

2024-07-01 17:24:27 1319

原创 【Docker】docker 替换宿主与容器的映射端口和文件路径

docker 替换宿主与容器的映射端口和文件夹。

2024-06-27 14:38:51 544

原创 ImportError: cannot import name ‘model_urls‘ from ‘torchvision.models.resnet‘

every blog every motto: You can do more than you think.https://blog.csdn.net/weixin_39190382?type=blog如下代码出现问题:报错:解决办法:

2024-06-15 17:50:06 837

原创 【AI】你要的U-KAN来了

U-KAN来了,快是真的快的,上个月才出的KAN,不得不说快。先占个坑,有时间细看。下面放上摘要。

2024-06-06 14:14:33 1016

原创 【异常检测】MVTec LOCO AD 数据集

MVTec LOCO AD 数据集介绍相比MVTec AD 增加了逻辑异常。

2024-06-06 11:14:17 1125

原创 【异常检测】【EfficientAD】论文简单梳理与代码实现

EfficientAD作为较近的一篇异常检测网络,主要还是从S-T网络入手,对齐进行了相关改进。修改特征提取器引入自动编码器hard loss以及惩罚项。

2024-05-31 10:32:16 2011

原创 【异常检测】新版异常检测库anomalib的使用

异常检测库anomalib的使用。

2024-05-09 14:25:10 2962 2

转载 深度学习架构迎来最强挑战者 KAN,MLP 的时代结束了?

作者通过一个示例(包含变量 x 和 y 的复合函数)来展示网格扩展的效果,说明随着网格点数量的增加,训练损失迅速下降,但测试损失呈现先降后升的 U 形曲线,反映了偏差-方差权衡的问题。(Frank Rosenblatt)在他的著作《Perceptron》中介绍了一个包含输入层、隐藏层(该隐藏层具有随机且不进行学习的权重)以及具有学习连接的输出层的分层网络,如今这被视为 MLP 的雏形,它并不等同于现代意义上具有反向传播能力的 MLP,也未形成深度学习网络的概念。这种设计允许网络更灵活地逼近复杂的函数关系。

2024-05-06 11:03:48 566

原创 【Transformer】detr之loss逐行梳理(四)

detr之loss逐行梳理匹配,预测框和gt框进行匹配计算损失""""""self.num_classes = num_classes # 数据集类别数self.matcher = matcher # HungarianMatcher() 匈牙利算法 二分图匹配self.weight_dict = weight_dict # dict: 18 3x6 6个decoder的损失权重 6*(loss_ce+loss_giou+loss_bbox)

2024-04-26 14:52:27 1408

原创 【分配】linear_sum_assignment函数

分配问题小结,linear_sum_assignment 函数使用的是Jonker-Volgenant algorithm算法。

2024-04-25 14:31:41 2576

原创 【日常】图床中图片水印设置方法小结

图床中图片水印设置。

2024-04-24 16:28:10 532

原创 【匹配】匈牙利匹配算法

匈牙利匹配算法。

2024-04-24 12:08:18 1506

原创 【Transformer】detr之decoder逐行梳理(三)

detr之decoder逐行梳理。

2024-04-23 16:42:01 1593 1

原创 【Transformer】detr之encoder逐行梳理(二)

detr之encoder逐行梳理。

2024-04-22 16:14:33 564

原创 【Transformer】detr之backone逐行梳理(一)

detr 之backbone逐行梳理。

2024-04-22 13:54:54 1372

原创 【Transformer】detr梳理

detr。

2024-04-18 09:38:52 629

原创 【Transformer】Swin梳理

every blog every motto: You can do more than you think.https://blog.csdn.net/weixin_39190382?type=blogswin论文: https://arxiv.org/pdf/2103.14030v1.pdf时间: 2021.3.25作者: Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, Baining Guo网

2024-04-18 09:37:37 324

原创 【Transformer】vit梳理

vit梳理。

2024-04-18 09:35:17 875

原创 【机器学习之---数学】拉格朗日乘子法

优化之拉格朗日乘子法。

2024-03-26 10:31:32 1079

原创 【机器学习之---数学】随机游走

随机游走定义如下:随机游走Snn≥0Sn​n≥0为随机过程SnS0x1XnSn​S0​x1​...Xn​其中,X1X2X1​X2​...是独立同分布(i.i.d)随机变量,与S0S_0S0​无关。

2024-03-26 10:16:57 2400

原创 【机器学习之---数学】熵和交叉熵

熵和交叉熵。

2024-03-26 10:12:40 925

原创 【机器学习之---数学】马尔科夫链

马尔科夫链Xt−2Xt−1XtXt−1...Xt−2​Xt−1​Xt​Xt−1​...,那么Xt−1X_{t-1}Xt−1​时刻的状态,只与Xt−1X_{t-1}Xt−1​时刻的状态有关,与Xt−2X_{t-2}Xt−2​时刻的状态无关。

2024-03-26 09:59:44 2351 1

原创 【自编码器】梳理(上)

梳理有关自编码器。

2024-03-23 21:53:16 1321

原创 【Transformer】transformer注解

transformer注解在过去的一年里,《Attention is all you need》中的transformer一直萦绕在很多人的脑海里。除了在翻译质量上产生重大改进之外,它还为许多其他NLP任务提供了一种新的架构。论文本身写得很清楚,但传统观点认为很难正确执行。在这篇文章中,我将以逐行实现的形式呈现论文的注释版本。我重新整理并删除了原论文中的一些章节,并在全文中添加了注释。这个文档本身就是一个工作笔记本,应该是一个完全可用的实现(可以在jupyter notebook中运行)。

2024-03-23 21:10:35 907

原创 【机器学习之---数学】统计学基础概念

统计学基础。

2024-03-23 21:05:45 886

原创 【经典算法】有趣的算法之---粒子群算法梳理

粒子群算法粒子群算法(Particle Swarm Optimization,PSO)是一种用于解决优化问题的元启发式算法。它通过模拟鸟群或鱼群中的行为来进行优化搜索。在粒子群算法中,问题的潜在解被表示为一群粒子。每个粒子代表一个候选解,并根据其自身的经验和群体的信息进行移动和调整。粒子的位置表示候选解的特征向量,速度表示粒子在搜索空间中的移动方向和速度。粒子群算法广泛应用于各种优化问题,如函数优化、神经网络训练、组合优化等。它是一种简单且易于实现的优化算法,具有全局搜索能力和较好的收敛性。

2024-01-17 16:22:19 9468 3

原创 【经典算法】有趣的算法之---遗传算法梳理

遗传算法是一种基于自然选择和遗传机制的优化算法,因此它通常被用于求解各种最优化问题,例如函数优化、特征选择、图像处理等。将数学中的优化问题,首先通过“编码”将数字编程“0101”类似这种二进制形式(不绝对),然后对其进行变换(“变异”),根据提前指定的“目标函数”(适应度)对这组数学进行筛选,重复这个过程一定次数(“迭代进化”),最终找到最优解遗传算法(Genetic Algorithm,简称GA)受自然进化理论启发的一系列搜索算法,起源于对生物系统所进行的计算机模拟研究,是一种随机全局搜索优化。

2024-01-15 15:36:16 4011

原创 【JS逆向】逆向案例之 ----- 安某客滑块

安某客滑块小结。

2024-01-01 15:33:31 1591

原创 【经典算法】有趣的算法之---蚁群算法梳理

蚁群算法记录蚁群算法(Ant Clony Optimization, ACO)是一种群智能算法,它是由一群无智能或有轻微智能的个体(Agent)通过相互协作而表现出智能行为,从而为求解复杂问题提供了一个新的可能性。蚁群算法最早是由意大利学者Colorni A., Dorigo M. 等于1991年提出。经过20多年的发展,蚁群算法在理论以及应用研究上已经得到巨大的进步。蚂蚁在寻找食物的过程中往往是随机选择路径的,但它们能感知当前地面上的信息素浓度,并倾向于往信息素浓度高的方向行进。

2023-12-28 09:38:23 1828

原创 【RNNsearch】neural machine translation by jointly learning to align and translate阅读与思考

neural machine translation by jointly learning to align and translate阅读与思考作为transformer的前传,同时,作为在nlp中第一篇注意力机制相关文章,还是很有必要一读。本文的主要贡献是打破了此前翻译中encoder-decoder需将句子变换到一个固定的长度,采用自适应方法。arxiv第一版时间为2014年。

2023-12-22 16:11:54 986

原创 正在连接到 objects.githubusercontent.com

下载记录。

2023-12-15 21:32:47 1669

原创 【linux】添加、查看、删除代理

添加、查看、删除代理 记录。

2023-12-13 13:59:41 2142

MVTec LOCO AD dataset 之 juice-bottle

MVTec LOCO AD由工业检测场景中的五个对象类别组成。我们总共提供了1772张图像用于训练,304张用于验证,1568张用于测试。 MVTec LOCO AD由工业检测场景中的五个对象类别组成。我们总共提供了1772张图像用于训练,304张用于验证,1568张用于测试。 MVTec LOCO AD由工业检测场景中的五个对象类别组成。我们总共提供了1772张图像用于训练,304张用于验证,1568张用于测试。 MVTec LOCO AD由工业检测场景中的五个对象类别组成。我们总共提供了1772张图像用于训练,304张用于验证,1568张用于测试。 MVTec LOCO AD由工业检测场景中的五个对象类别组成。我们总共提供了1772张图像用于训练,304张用于验证,1568张用于测试。 MVTec LOCO AD由工业检测场景中的五个对象类别组成。我们总共提供了1772张图像用于训练,304张用于验证,1568张用于测试。 MVTec LOCO AD由工业检测场景中的五个对象类别组成。我们总共提供了1772张图像用于训练,304张用于验证,1568张用于测试。 MVTec LOCO

2024-06-06

机器学习实战:基于Scikit-Learn、Keras和TensorFlow

机器学习实战:基于Scikit-Learn、Keras和TensorFlow 机器学习实战:基于Scikit-Learn、Keras和TensorFlow 机器学习实战:基于Scikit-Learn、Keras和TensorFlow 机器学习实战:基于Scikit-Learn、Keras和TensorFlow 机器学习实战:基于Scikit-Learn、Keras和TensorFlow 机器学习实战:基于Scikit-Learn、Keras和TensorFlow 机器学习实战:基于Scikit-Learn、Keras和TensorFlow 机器学习实战:基于Scikit-Learn、Keras和TensorFlow 机器学习实战:基于Scikit-Learn、Keras和TensorFlow 机器学习实战:基于Scikit-Learn、Keras和TensorFlow

2023-12-28

Hands-On Deep Learning Architectures with Python Create deep neu

Hands-On Deep Learning Architectures with Python Create deep neural networks to solve computational problems using TensorFlow... (Yuxi (Hayden) Liu, Saransh Mehta) (Z-Library) pdf Hands-On Deep Learning Architectures with Python Create deep neural networks to solve computational problems using TensorFlow... (Yuxi (Hayden) Liu, Saransh Mehta) (Z-Library) pdf Hands-On Deep Learning Architectures with Python Create deep neural networks to solve computational problems using TensorFlow... (Yuxi (Hay

2023-12-28

Hands-On Genetic Algorithms with Python: Applying genetic algori

Hands-On Genetic Algorithms with Python: Applying genetic algorithms to solve real-world deep learning and artificial intelligence problems pdf Hands-On Genetic Algorithms with Python: Applying genetic algorithms to solve real-world deep learning and artificial intelligence problems pdf Hands-On Genetic Algorithms with Python: Applying genetic algorithms to solve real-world deep learning and artificial intelligence problems pdf

2023-12-28

蚁群算法matlab版

蚁群算法matlab版蚁群算法matlab版 蚁群算法matlab版蚁群算法matlab版 蚁群算法matlab版蚁群算法matlab版 蚁群算法matlab版蚁群算法matlab版 蚁群算法matlab版蚁群算法matlab版 蚁群算法matlab版蚁群算法matlab版 蚁群算法matlab版蚁群算法matlab版 蚁群算法matlab版蚁群算法matlab版 蚁群算法matlab版蚁群算法matlab版 蚁群算法matlab版蚁群算法matlab版 蚁群算法matlab版蚁群算法matlab版 蚁群算法matlab版蚁群算法matlab版 蚁群算法matlab版蚁群算法matlab版 蚁群算法matlab版蚁群算法matlab版 蚁群算法matlab版蚁群算法matlab版 蚁群算法matlab版蚁群算法matlab版 蚁群算法matlab版蚁群算法matlab版 蚁群算法matlab版蚁群算法matlab版 蚁群算法matlab版蚁群算法matlab版 蚁群算法matlab版蚁群算法matlab版 蚁群算法matlab版蚁群算法matlab版 蚁群算法matlab版蚁群算法ma

2023-12-28

蚁群算法python版

蚁群算法Python实现案例蚁群算法Python实现案例 蚁群算法Python实现案例蚁群算法Python实现案例 蚁群算法Python实现案例蚁群算法Python实现案例 蚁群算法Python实现案例蚁群算法Python实现案例 蚁群算法Python实现案例蚁群算法Python实现案例 蚁群算法Python实现案例蚁群算法Python实现案例 蚁群算法Python实现案例蚁群算法Python实现案例 蚁群算法Python实现案例蚁群算法Python实现案例 蚁群算法Python实现案例蚁群算法Python实现案例 蚁群算法Python实现案例蚁群算法Python实现案例 蚁群算法Python实现案例蚁群算法Python实现案例 蚁群算法Python实现案例蚁群算法Python实现案例 蚁群算法Python实现案例蚁群算法Python实现案例 蚁群算法Python实现案例蚁群算法Python实现案例 蚁群算法Python实现案例蚁群算法Python实现案例 蚁群算法Python实现案例蚁群算法Python实现案例 蚁群算法Python实现案例蚁群算法Python实现案例

2023-12-27

Fiddler 编程猫专用插件 1.0.8 预览版

Fiddler 编程猫专用插件 1.0.8 预览版

2023-07-29

基于matlab的分形插值程序(二维和三维都有)

基于matlab的二维和三维曲面分形插值

2020-07-30

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除