【OpenCV】CUDA模块3:图像转换及采样

本文介绍了OpenCV的CUDA模块,包括阈值处理函数cv::cuda::threshold用于图像二值化和分割,重映射函数cv::cuda::remap实现图像扭曲和重采样,以及颜色空间转换函数cv::cuda::cvtColor用于实时图像处理和预处理。这些函数利用GPU加速,提高图像处理效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1: cv::cuda::threshold()阈值处理

cv::cuda::threshold 是 OpenCV 中 CUDA 模块的一个函数,用于在 GPU 上对图像进行阈值处理。阈值处理是一种简单的图像分割方法,通过设定一个阈值,将图像的像素值分为两类或多类。

void cv::cuda::threshold(InputArray src, OutputArray dst, double thresh, double maxval, int type)

src: 输入图像,通常是单通道的灰度图像。
dst: 输出图像,大小和类型与输入图像相同。
thresh: 阈值,用于分类像素值。
maxval: 当像素值超过(或小于,取决于阈值类型)阈值时赋予的值。
type: 阈值类型,决定了如何应用阈值化。例如,cv::THRESH_BINARY 表示二值阈值化。

使用场景:
1:图像二值化:将灰度图像转换为二值图像,常用于文字识别、图像分割等场景。
2:图像分割:通过设定不同的阈值,将图像中的不同区域分割开来,用于提取感兴趣的区域。
3:图像增强:通过阈值处理,增强图像中的某些特征,如边缘检测后的二值化。

以下是一个使用 cv::cuda::threshold 对灰度图像进行二值化处理的简单例子:

#include <opencv2/opencv.hpp>  
#include <opencv2/cudaarithm.hpp>  
#include <opencv2/cudawarping.hpp>  
#include <iostream>  
  
int main()  
{
     
    cv::Mat src = cv::imread("path_to_your_image.jpg", cv::IMREAD_GRAYSCALE);  
    if (src.empty())  
    {
     
        std::cout << "Error loading image!" << std::endl;  
        return -1;  
    }  
  
    cv::cuda::GpuMat src_gpu(src);  
    cv::cuda::GpuMat dst_gpu;  
  
    // 设置阈值类型和阈值  
    double thresh = 127.0;  
    double maxval = 255.0;  
    int type = cv::THRESH_BINARY;  
  
    // 应用阈值处理  
    cv::cuda::threshold
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值