我什么都布吉岛
码龄7年
关注
提问 私信
  • 博客:876,270
    社区:87
    问答:3,628
    视频:3
    879,988
    总访问量
  • 299
    原创
  • 6,862
    排名
  • 551
    粉丝
  • 学习成就

个人简介:Keep writing,Keep thinking!

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2017-06-21
博客简介:

Fishfishfishfishcat

查看详细资料
  • 原力等级
    成就
    当前等级
    6
    当前总分
    2,934
    当月
    9
个人成就
  • 获得724次点赞
  • 内容获得145次评论
  • 获得4,403次收藏
  • 代码片获得3,622次分享
创作历程
  • 1篇
    2024年
  • 13篇
    2023年
  • 54篇
    2022年
  • 94篇
    2021年
  • 90篇
    2020年
  • 34篇
    2019年
  • 24篇
    2018年
成就勋章
TA的专栏
  • 工业机器人
    4篇
  • 自动控制原理
    2篇
  • 机器人仿真
    1篇
  • 运动规划
    11篇
  • ROS操作系统
    15篇
  • PLCopen
    3篇
  • 解析几何与线性代数
  • 高等数学
    2篇
  • 解析几何
    5篇
  • 线性代数
    41篇
  • 编程语言
    3篇
  • Python
    11篇
  • C++
    66篇
  • Effective C++
    5篇
  • Socket库
    4篇
  • QT
    15篇
  • 线程库
    13篇
  • 进程间通信
    5篇
  • Leetcode
    2篇
  • 设计模式
    1篇
  • Linux操作系统
    40篇
  • 版本管理工具
    5篇
  • 编译工具
    38篇
兴趣领域 设置
  • 编程语言
    c++
  • 数学
    线性代数几何学
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

分段三次样条

如果这些点非常密集且分布不均匀,插值曲线可能会在不同点之间“剧烈地”上下摆动以适应所有点,而这种摆动可能并不代表数据的真实趋势,而只是为了准确地通过所有给定的点。给定若干已知点位,连接、逼近这些点位的方式有很多种,我们既可以给定一个足够阶数的多项式一次性穿过、逼近这些点位,这些方法可以是:牛顿插值法、拉格朗日插值法;也就是文章的重点,分段三次多项式样条。上面展示的就是按段给出的表达式,按段一条条给出的,所以叫做样条。如果每相邻两个点之间的连线是三次多项式,那么对应的整段组合而成的曲线就叫做三次样条函数。
原创
发布博客 2024.10.17 ·
428 阅读 ·
3 点赞 ·
0 评论 ·
8 收藏

施密特正交化

相信大家在平时的期末考试中一定少不了对某某向量组执行标准正交化类型的题目。今天我们从这个题目入手,说明这个如何执行施密特正交化,以及为什么要进行正交化。
原创
发布博客 2023.10.21 ·
1447 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

C++中的双冒号(::) 使用小结

public:// 函数体在这里双冒号用来指定成员方法属于哪一个类。
原创
发布博客 2023.09.12 ·
826 阅读 ·
3 点赞 ·
1 评论 ·
6 收藏

理解和创建Windows和Linux下的动态和静态库区别

然而,库并不是单一的:它们可以是动态的,也可以是静态的,每一种类型都有其使用场景。为了保证动态库的使用效率,Windows默认情况下将动态库的所有符号都进行了隐藏,也就是默认不输出;而Linux则是将所有符号进行了输出,所幸的是,它们都有相应的关键字进行可见性的控制。Linux和Windows对于生成库的默认行为不同,前者在默认情况下是全部导出的,后者则是需要显式说明导出的符号。从而导致没有办法使用其中的库,其实就是因为没有相应标记输出的符号,如果没有输出符号,Windows当然也不会为你生成对应的代码。
原创
发布博客 2023.06.11 ·
2263 阅读 ·
1 点赞 ·
0 评论 ·
20 收藏

(四)调整PID控制器参数的指南

1] 在传统的线性控制系统中,系统的传递函数通常被分解为最小相位(minimum phase)和非最小相位(non-minimum phase)两部分。最小相位系统具有良好的稳定性和因果性,它们对输入信号的响应能够快速衰减并达到稳定状态。非最小相位系统的响应可能会包含振荡或反向反馈,从而引入不希望的效应。比如,耗时、潜在的损坏硬件的可能性;基于规则的调整方法,比如说Ziegler-Nichols和Cohen-Coon,其缺点则是对于某些控制对象无效,比如不稳定对象、高阶对象,或者没有或者很少的时间延迟。
原创
发布博客 2023.05.27 ·
2446 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

(三) PID控制中的噪声过滤

在前面的章节里,我们谈到了积分环节由于执行器的物理限制导致的积分项Wind-up,通过设置饱和限幅器,选择性关闭积分环节来完成Wind-up问题。今天我们要解决的问题就是微分环节可能存在的问题。通过传感器我们可以观测出一个被控量的大小,和前面说到的anti-windup一样,受到物理环境的限制,对于传感器而言,那就是噪声。我们知道微分环节其实就是对误差的一个求导,几何意义就是斜率,斜率越大,表示控制系统受到的影响也越大。如果噪声变化量很大(或者说频率很大)系统将会受到很大的影响。
原创
发布博客 2023.05.25 ·
2879 阅读 ·
2 点赞 ·
0 评论 ·
14 收藏

(二)PID控制的Anti-windup

被控对象可以分为两个部分,分别是执行器,用于产生力或者能量从而改变系统,和处理,比如说温控的加热过程。在现实世界中,执行器往往不能执行所有来自控制器的输出,因为他有速度约束(Rate constraint)和饱和(Saturation)。
原创
发布博客 2023.05.05 ·
2386 阅读 ·
4 点赞 ·
0 评论 ·
19 收藏

30奇异值分解

在讲SVD之前,我们先来看看计算是如何存储一个灰度图的。计算机用矩形,这个矩形由很多小块组成,这个在图像中是一个像素点,因为表示的是灰度图,所以一共有256种状态,不同数值表示不同的灰度程度。如果一个图像时纯白的,那么其所有像素点数值为255。如果我们要拷贝一个m×n像素图像时,那一共需要多少次位的操作呢?m×n×8,一个典型的电视一般有m1080n1920。
原创
发布博客 2023.04.17 ·
419 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

31线性变换及其矩阵

答:选择不同的基对应的坐标值就会不同,如果坐标值改变了,那么相应的矩阵也会做相应的更改。变换是映射,它将一个事物对应成另一个事物,在所有映射中,满足线性条件的映射叫做线性变换。,如果进行了线性变换,那么变换前后各点的距离相等关系是不变的。旋转可以用一个矩阵来表示,属于左乘一个矩阵的情况,故为线性变换。步骤是,取输入基,进行进行线性变换,事实上,所有线性变换都可以用一个矩阵来表示。,前面讨论过,左乘一个矩阵是一个线性变换。,对应的输出基没有可以表示这个的基,故为。根据概念,它不是一个线性变换,因为。
原创
发布博客 2023.03.23 ·
1338 阅读 ·
1 点赞 ·
0 评论 ·
11 收藏

29相似矩阵和若尔当标准型

介绍了相似矩阵的定义和若尔当矩阵。
原创
发布博客 2023.03.02 ·
1234 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

28正定矩阵

这一节进入正定矩阵的内容,什么叫做正定矩阵?为什么我们对矩阵正定这么感兴趣?PS:这一节将前面所有的概念都融合在一起:主元、行列式、特征值、不稳定性。
原创
发布博客 2023.02.22 ·
2099 阅读 ·
0 点赞 ·
0 评论 ·
12 收藏

空间直线方程及其与面线的夹角

一个直线可以由多个方向向量,具体的某一个就叫做方向数,对应方向向量的预先表示叫做这个直线的方向余弦。如果一个非零向量平行于一条已知直线,那么这个向量就叫做直线的方向向量。在解析几何中,两个直线方向向量的夹角叫做两直线的夹角。和之前遇到的问题一样,向量之间的夹角通常是。称为直线与平面的夹角,当直线与平面垂直时规定夹角为90度。我们设直线的方向向量为。当直线与平面不垂直时,直线和它在平面上的投影直线的夹角。是直线上的任意点,根据方向向量。,设平面直线与其投影的夹角为。是直线和平面垂直的条件。
原创
发布博客 2023.02.20 ·
2660 阅读 ·
1 点赞 ·
0 评论 ·
11 收藏

平面及其方程

空间解析几何中,任何曲面或曲线都看作点的几何轨迹。在这样的意义下,如果曲面SSSFxyz0(1)Fxyz01曲面SSS上任一点的坐标都满足方程1(1)1不在曲面SSS上的点坐标都不满足方程1(1)1那么,方程1(1)1就叫做曲面SSS的方程,而曲面SSS就叫做方程1(1)1的图形。上面的概念其实就是在描述数学表达式恰好能表达曲面,不多也不少。那么空间曲线又是如何定义的?空间曲线可以看作两个曲面S1S1S1S2S2S2。
原创
发布博客 2023.02.18 ·
1470 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

27复矩阵和快速傅里叶变换

这一节,我们将会把线性代数扩展到新的数域,复数。
原创
发布博客 2023.02.02 ·
871 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Numpy(五)ndarrays的切片

介绍了ndarray的切片操作。
原创
发布博客 2022.12.11 ·
1842 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

Python基础(一)基本类型

一、Number数字1.1 注意事项Python支持int、float、bool和complex类型。complex是复数类型a+bj(或complex(a,b)),a表示实部,b表示虚部,a b本身是float类型。Python使用变量时,无需声明变量。a=3 # 自动声明为intb=3.4 # 自动声明为floata=3/4 # a的数据类型从int改成了floatPython除法/总是返回一个浮点数,如果你想只返回整数部分,请使用//。7//2 # 返回37.0//2 # 返回3
原创
发布博客 2022.11.30 ·
1049 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

26对称矩阵及正定性

给定一个对称矩阵,可以分解为三项,他完全展示了对称矩阵的特征值和特征向量以及其对称的性质。在数学上称为谱定理( Spectral theorem),这里指的是特征向量矩阵,不光是数学,光学和力学(主轴定理)也有类似的概念。如果我们需要计算一个50阶的矩阵的特征值,手工算并不是一个明智的选择。对于一个单位矩阵任何向量都是其特征向量,这里指的特征向量应该理解为可以选出的垂直的特征向量。也就是说每一个对称矩阵都是一些相互垂直的投影矩阵的组合。不是一个实对称矩阵,而是一个复对称矩阵必须要满足。
原创
发布博客 2022.11.02 ·
2228 阅读 ·
1 点赞 ·
0 评论 ·
5 收藏

25复习课

前面知识的复习。
原创
发布博客 2022.10.15 ·
980 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

17正交矩阵和Gram-Schmidt正交化

正交矩阵的定义及应用。
原创
发布博客 2022.10.10 ·
2459 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

24马尔可夫矩阵、傅立叶级数

傅里叶级数和马尔可夫在矩阵上的表示和应用。
原创
发布博客 2022.10.09 ·
1372 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏
加载更多