深度通信网络专栏(4)|自编码器:Blind Channel Equalization using Variational Autoencoders

本文地址:https://arxiv.org/abs/1803.01526 文章目录前言文章主要贡献系统模型变分自编码器引入神经网络仿真结果 前言 深度通信网络专栏|自编码器:整理2018-2019年使用神经网络实现通信系统自编码器的论文,一点拙见,如有偏颇,望不吝赐教,顺颂时祺。 文章主要贡献 ...

2019-06-01 17:30:40

阅读数 50

评论数 0

深度通信网络专栏(3)|自编码器:An Introduction to Deep Learning for the Physical Layer

本文地址:https://arxiv.org/pdf/1702.00832.pdf GitHub地址:https://github.com/musicbeer/Deep-Learning-for-the-Physical-Layer 文章目录前言文章主要贡献全文概述sisomimoRTN的引入 前...

2019-05-28 22:58:07

阅读数 677

评论数 0

深度学习:用生成对抗网络(GAN)来恢复高分辨率(高精度)图片 (附源码,模型与数据集)

文章目录前言Demo效果链接原理分析系统模型损失函数实验结束 前言 平时生活中,我们经常碰到一些自己喜欢的图片却苦于分辨率很低,而原图又找不太到。 现在,神经网络可以帮助我们从一张给定的低分辨率图片恢复出高分辨率的图片。 这个功能听上去既炫酷又实用,具体是怎么做的呢,详见下文! Demo效果 ...

2019-04-22 19:44:32

阅读数 44073

评论数 9

深度通信网络专栏:基于GAN生成对抗网络的毫米波信道估计

本文地址:Generative Adversarial Estimation of Channel Covariance in Vehicular Millimeter Wave Systems 文章目录前言文章中心思想系统模型信道模型网络相关稀疏变换网络模型具体网络设计:生成器判别器仿真结果 ...

2019-04-20 14:11:09

阅读数 41869

评论数 0

深度通信网络专栏: ComNet for OFDM接收机——深度学习与传统理论的结合

本文地址:ComNet: Combination of Deep Learning and Expert Knowledge in OFDM Receivers 文章目录前言文章中心思想全文概览系统模型训练流程仿真结果 前言 深度通信网络专栏: 快速上手: 2018-2019年最新深度学习用...

2019-04-18 20:29:17

阅读数 41589

评论数 6

搭建你自己的深度通信网络:配置深度学习环境新手向教程

面向致力于传统通信结合深度学习的科研工作者的全网最优入门指南。 文章目录前言硬件配置硬件清单推荐:环境配置工具推荐IDE 前言 随着深度学习浪潮的席卷,许多科研人员开始思考传统通信与深度学习的结合。然而习惯了Matlab下的仿真, python编程环境及各式框架的眼花缭乱成为了第一步的拦路虎。...

2019-04-17 15:08:50

阅读数 41251

评论数 0

Windows配置tensorflow-gpu环境:最新,最快速,容错率最高的方法,没有之一。

本方法优点 不需要逐个自己安装cuda, cudnn甚至vs2015等坑爹玩意 不会直接在自己电脑上装cuda,防止各种路径混乱之类。 可以多个cuda兼容操作 可以完美的在不影响已有tf1.0系列的情况下,完美使用tf2.0 对于绝大部分读者,第一条已经是足够的理由了,毕竟现在大部分的博客攻略...

2019-03-24 18:06:07

阅读数 41230

评论数 2

最新jupyter notebook配置踩坑大全

下载anaconda 自带会下载jupyter notebook 需要注意的是,该jupyter只存在在base环境下,所以其他环境下还需要另外下载 例如,我使用的tensorflow1.12版本和anaconda初始的python3.7不搭,因此 conda create -n python...

2019-03-19 23:24:11

阅读数 34092

评论数 0

DQN的多种改进(1)

1.N-step DQN N-step DQN的核心是将bellman方程展开,即 Q(st,at)=rt+γrt+1+γ2maxa′Q(st+2,a′)Q(s_t,a_t) = r_t + \gamma r_{t+1} + \gamma^2 max_{a'}Q(...

2019-03-08 21:27:35

阅读数 34145

评论数 0

用pytorch简单实现DQN

本文内容参考 《Deep Reinforcement Learning Hands-On》第六章 这篇博客默认读者已经熟悉Q-learning。 DQN算法 初始化Q网络和target_Q网络, ϵ=1\epsilon = 1ϵ=1。 以 ϵ\epsilonϵ 的概率随机选取动作aaa, 否则a...

2019-03-08 16:57:01

阅读数 34334

评论数 0

近日深度学习调参心得:应对DNN中的过拟合

开门见山 应对过拟合最后的结论: 增大数据集 若训练集性能下滑, 增大网络深度 考虑使用卷积神经网络, 相比于dense层,参数更少,更易收敛优化。 前因后果 由于我是使用深度神经网络来处理通信中的一些优化问题,更偏向于理论方面,因此在深度学习的应用中相比其他领域有着得天独厚的优势:根据已有模...

2019-03-06 11:59:05

阅读数 34017

评论数 0

tensorflow 乘法最强利器: einsum

对应的问题: 在用tensorflow构造自己的损失函数时,经常会涉及到复杂的矩阵乘法。而这些矩阵乘法本来并不复杂, 比如只是简单的 维度为A×BA\times BA×B 的矩阵 X\mathbf{X}X 和 维度为 B×CB\times CB×C的矩阵Y\mathbf{Y}Y相乘。 但是由于在深...

2019-02-21 22:10:25

阅读数 32852

评论数 0

提示
确定要删除当前文章?
取消 删除