混合波束赋形专栏|基于坐标迭代更新法的混合波束赋形算法

版权声明:本文为博主原创文章,遵循 CC 4.0 by-sa 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_39274659/article/details/89765714


《Hybrid Digital and Analog Beamforming Design for Large-Scale Antenna Arrays》
本文地址:https://arxiv.org/abs/1601.06814
该算法的仿真,可以参照github:https://github.com/Zzhaoxingyu/hybrid-beamforming-for-three-scenes

前言

混合波束赋形专栏|基于坐标迭代更新法的混合波束赋形算法:整理2016年一篇JSAC高引论文中的混合波束赋形算法,一点拙见,如有偏颇,望不吝赐教,盼即赐复。

文章中心思想

Hybrid Beamforming(简称 HBF )的优点是能够以相较于传统Full Digital beamforming(简称FD)更低的功耗和硬件成本实现接近FD的性能。在目前的半导体技术下,HBF更有利于应用到实际的大规模MIMO系统中。本文为了求解最优HBF,提出了一种坐标迭代下降算法,即:通过更新HBF中Analog beamforming的每个元素而达到最佳性能。

全文概览

系统模型

在这里插入图片描述

考虑一个窄带下行单小区多用户分布式天线系统,具体配置如下:基站端有NN根天线,NtRFN_{t}^{\mathrm{RF}}条发送射频链,KK个服务用户,每个用户配有MM根天线,NrRFN_{r}^{\mathrm{RF}}条接收射频链。每个用户所需的数据流数目为Ns=KdN_{s}=K d,并且满足KdNtRFNK d \leq N_{t}^{\mathrm{RF}} \leq NdNrRFMd \leq N_{r}^{\mathrm{RF}} \leq M。在混合波束赋形架构中,基站首先在基带使用一个NtRF×NsN_{t}^{R F} \times N_{s}的digital precoder VD\mathbf{V}_{D}进行数字波束赋形,然后通过NtRFN_{t}^{R F}条发送射频链上变频到载频
。随后使用一个通过模拟移相器实现大小为N×NtRFN \times N_{t}^{R F}的RF precoder VRF\mathbf{V}_{RF}(受到恒模约束:VRF(i,j)2=1\left|\mathbf{V}_{R F}(i, j)\right|^{2}=1)构造最终的发射信号。发射信号可以表示为:x=VRFVDs=l=1KVRFVDisl\mathbf{x}=\mathbf{V}_{R F} \mathbf{V}_{D} \mathbf{s}=\sum_{l=1}^{K} \mathbf{V}_{R F} \mathbf{V}_{D_{i}} \mathbf{s}_{l}
其中VD=VD1,VD2,,VDK\mathbf{V}_{D}=\left\lfloor\mathbf{V}_{D_{1}}, \mathbf{V}_{D_{2}}, \ldots, \mathbf{V}_{D_{K}}\right\rfloorsCNs×1\mathbf{s} \in \mathbf{C}^{N_{s} \times 1},其包含了KK个用户的数据流。对于第kk用户,接收信号可以建模为:yk=HkVRFVDksk+HklkVRFVDlsl+zk\mathbf{y}_{k}=\mathbf{H}_{k} \mathbf{V}_{R F} \mathbf{V}_{D_{k}} \mathbf{s}_{k}+\mathbf{H}_{k} \sum_{l \neq k} \mathbf{V}_{R F} \mathbf{V}_{D_{l}} \mathbf{s}_{l}+\mathbf{z}_{k}
其中HkCM×N\mathbf{H}_{k} \in \mathbf{C}^{M \times N},它是基站发射天线到第kk个用户天线的复信道增益矩阵,zkCN(0,σ2IM)\mathbf{z}_{k} \sim \mathcal{C} N\left(0, \sigma^{2} \mathbf{I}_{M}\right)代表高斯加性白噪声。
在接收端,对于用户kk首先使用一个大小为M×NtRFM \times N_{t}^{R F}的RF combiner(受到恒模约束:VRF(i,j)2=1\left|\mathbf{V}_{R F}(i, j)\right|^{2}=1)进行处理,然后通过NrRFN_{r}^{R F}条射频链下变频到基带,经过digital combiner WDkCNrRF×d\mathbf{W}_{D_{k}} \in \mathbf{C}^{N_{r}^{R F} \times d}处理后得到最终的数据流。因此,最终处理的信号可以表示为: y~k=WtkHHkVtksk+WtkHHklkVtlsl+WtkHzk\widetilde{\mathbf{y}}_{k}=\mathbf{W}_{t_{k}}^{H} \mathbf{H}_{k} \mathbf{V}_{t_{k}} \mathbf{s}_{k}+\mathbf{W}_{t_{k}}^{H} \mathbf{H}_{k} \sum_{l \neq k} \mathbf{V}_{t_{l}} \mathbf{s}_{l}+\mathbf{W}_{t_{k}}^{H} \mathbf{z}_{k}
其中:Vtk=VRFVDk\mathbf{V}_{t_{k}}=\mathbf{V}_{R F} \mathbf{V}_{D_{k}}Wtk=WRFkWDk\mathbf{W}_{t_{k}}=\mathbf{W}_{R F_{k}} \mathbf{W}_{D_{k}}。对于这样一个系统,第kk个用户在高斯信号假设下的总频谱效率可以表示为:
Rk=log2IM+WtkC1WtkHHkVtkVtkHHkHR_{k}=\log _{2}\left|\mathbf{I}_{M}+\mathbf{W}_{t_{k}} \mathbf{C}^{-1} \mathbf{W}_{t_{k}}^{H} \mathbf{H}_{k} \mathbf{V}_{t_{k}} \mathbf{V}_{t_{k}}^{H} \mathbf{H}_{k}^{H}\right|
其中Ck=WtkHHk(lkVtlVtiH)HkHWtk+σ2WtkHWtk\mathbf{C}_{k}=\mathbf{W}_{t_{k}}^{H} \mathbf{H}_{k}\left(\sum_{l \neq k} \mathbf{V}_{t_{l}} \mathbf{V}_{t_{i}}^{H}\right) \mathbf{H}_{k}^{H} \mathbf{W}_{t_{k}}+\sigma^{2} \mathbf{W}_{t_{k}}^{H} \mathbf{W}_{t_{k}}。考虑恒模约束,功率约束,以最大频谱效率为目标函数的HBF设计问题可以描述为:

在这里插入图片描述
PP是基站的总功率约束,βk\beta_{k}是用户kk的优先级,βk/l=1Kβl\beta_{k} / \sum_{l=1}^{K} \beta_{l},则代表用户kk的优先级越高。

大规模天线点对点MIMO系统的场景

在该窄带场景下,K=1K=1min(N,M)Ns\min (N, M) \geq N_{s}。为了不失一般性,NtRF=NrRF=NRFN_{t}^{R F}=N_{r}^{R F}=N^{R F}。此时的总频谱效率可以写为:R=log2IM+1σ2Wt(WtHWt)1WtHHVtVtHHHR=\log _{2}\left|\mathbf{I}_{M}+\frac{1}{\sigma^{2}} \mathbf{W}_{t}\left(\mathbf{W}_{t}^{H} \mathbf{W}_{t}\right)^{-1} \mathbf{W}_{t}^{H} \mathbf{H} \mathbf{V}_{t} \mathbf{V}_{t}^{H} \mathbf{H}^{H}\right|其中Vt=VRFVD\mathbf{V}_{t}=\mathbf{V}_{R F} \mathbf{V}_{D}Wt=WRFWD\mathbf{W}_{t}=\mathbf{W}_{R F} \mathbf{W}_{D}
作者的思路是:首先假设接收端是最优的,设计最优hybrid precoders。然后针对已经设计好的发送端,在设计最优hybrid combiner。于是,发送端的设计问题可以写为:


在这里插入图片描述
对于这样一个非凸问题直接求解仍然是很困难的,作者由将该问题分解为固定VRF\mathbf{V}_{\mathrm{RF}}求解VD\mathbf{V}_{\mathrm{D}},然后固定VRF\mathbf{V}_{\mathrm{RF}}求解VD\mathbf{V}_{\mathrm{D}}。在求解VD\mathbf{V}_{\mathrm{D}}时有一个很好的闭式解就是:VD=Q1/2UeΓe\mathbf{V}_{\mathrm{D}}=\mathbf{Q}^{-1 / 2} \mathbf{U}_{e} \mathbf{\Gamma}_{e}该闭式解是通过注水算法得到的。作者假设数据流等功率分配,VRFHVRFNI\mathbf{V}_{\mathrm{RF}}^{H} \mathbf{V}_{\mathrm{RF}} \approx N \mathbf{I}。可以在NRF=NsN^{\mathrm{RF}}=N_{s}下得到一个很好的结论,即:VDVDHγ2I\mathbf{V}_{\mathrm{D}} \mathbf{V}_{\mathrm{D}}^{H} \approx \gamma^{2} \mathbf{I}。 其中,γ2=P/(NNRF)\gamma^{2}=P /\left(N N^{\mathrm{RF}}\right)。利用该近似,VRF\mathbf{V}_{\mathrm{RF}}的求解问题可以描述为:

在这里插入图片描述
其中F1=HHH\mathbf{F}_{1}=\mathbf{H}^{H} \mathbf{H} 。对于这个问题的求解,作者提出了基于坐标迭代更新法的混合波束赋形算法 \color{red}{(也就是本文的重头戏)}。简单来说,该方法就是提取VRF\mathbf{V}_{\mathrm{RF}}中的每个元素VRF(i,j)\mathbf{V}_{\mathrm{RF}}(i, j)对目标函数的影响。上述的目标函数用VRF(i,j)\mathbf{V}_{\mathrm{RF}}(i, j)可以表示为:log2Cj+log2(2Re{VRF(i,j)ηij}+ζij+1)\log _{2}\left|\mathbf{C}_{j}\right|+\log _{2}\left(2 \operatorname{Re}\left\{\mathbf{V}_{\mathrm{RF}}^{*}(i, j) \eta_{i j}\right\}+\zeta_{i j}+1\right)其中:Cj=I+γ2σ2(VRFj)HF1VRFj\mathbf{C}_{j}=\mathbf{I}+\frac{\gamma^{2}}{\sigma^{2}}\left(\overline{\mathbf{V}}_{\mathrm{RF}}^{j}\right)^{H} \mathbf{F}_{1} \overline{\mathbf{V}}_{\mathrm{RF}}^{j}VRFj\overline{\mathbf{V}}_{\mathrm{RF}}^{j}是移除VRF\mathbf{V}_{\mathrm{RF}}jj列后的子矩阵。其他参数的定义为:ηij=iGj(i,)VRF(,j)\eta_{i j}=\sum_{\ell \neq i} \mathbf{G}_{j}(i, \ell) \mathbf{V}_{\mathrm{RF}}(\ell, j)
ζij=Gj(i,i)+2Re{mi,niVRF(m,j)Gj(m,n)VRF(n,j)}\begin{aligned} \zeta_{i j}=& \mathbf{G}_{j}(i, i) \\ &+2 \operatorname{Re}\left\{\sum_{m \neq i, n \neq i} \mathbf{V}_{\mathrm{RF}}^{*}(m, j) \mathbf{G}_{j}(m, n) \mathbf{V}_{\mathrm{RF}}(n, j)\right\} \end{aligned}
Gj=γ2σ2F1γ4σ4F1VRFjCj1(VRFj)HF1\mathbf{G}_{j}=\frac{\gamma^{2}}{\sigma^{2}} \mathbf{F}_{1}-\frac{\gamma^{4}}{\sigma^{4}} \mathbf{F}_{1} \overline{\mathbf{V}}_{\mathrm{RF}}^{j} \mathbf{C}_{j}^{-1}\left(\overline{\mathbf{V}}_{\mathrm{RF}}^{j}\right)^{H} \mathbf{F}_{1} 虽然上述表达式看似很复杂,但是推导并不困难,只需要将原目标函数逐项展开,表示成VRF(i,j)\mathbf{V}_{\mathrm{RF}}(i, j)的函数即可。假设除VRF(i,j)\mathbf{V}_{\mathrm{RF}}(i, j)之外的元素均固定,则对VRF(i,j)\mathbf{V}_{\mathrm{RF}}(i, j)可以更新可以表示为:VRF(i,j)={1, if ηij=0ηijηij, otherwise \mathbf{V}_{\mathrm{RF}}(i, j)=\left\{\begin{array}{cl}{1,} & {\text { if } \eta_{i j}=0} \\ {\frac{\eta_{i j}}{\left|\eta_{i j}\right|},} & {\text { otherwise }}\end{array}\right. 通过逐项更新最后就可以得到最优VRF\mathbf{V}_{\mathrm{RF}}。综上所述,VRF\mathbf{V}_{\mathrm{RF}}的求解可以表示为:

在这里插入图片描述
接收端的设计问题为:

在这里插入图片描述
其中F2=HVtVtHHH\mathbf{F}_{2}=\mathbf{H} \mathbf{V}_{\mathrm{t}} \mathbf{V}_{\mathrm{t}}^{H} \mathbf{H}^{H},利用WRFHWRFMI\mathbf{W}_{\mathrm{RF}}^{H} \mathbf{W}_{\mathrm{RF}} \approx M \mathbf{I}的假设,该问题可以表示为:

在这里插入图片描述
可以看出通过简单的变量代换就能共使用算法1继续求解WRF\mathbf{W}_{\mathrm{RF}}。最后再设计WD\mathbf{W}_{\mathrm{D}}。利用MMSE准则下的闭式解WD=J1WRFHHVt\mathbf{W}_{\mathrm{D}}=\mathbf{J}^{-1} \mathbf{W}_{\mathrm{RF}}^{H} \mathbf{H} \mathbf{V}_{\mathbf{t}},其中J=WRFHHVtVtHHHWRF+σ2WRFHWRF\mathbf{J}=\mathbf{W}_{\mathrm{RF}}^{H} \mathbf{H} \mathbf{V}_{\mathrm{t}} \mathbf{V}_{\mathrm{t}}^{H} \mathbf{H}^{H} \mathbf{W}_{\mathrm{RF}}+\sigma^{2} \mathbf{W}_{\mathrm{RF}}^{H} \mathbf{W}_{\mathrm{RF}}
需要注意的是前面的所有假设与近似均是在NRF=NsN^{\mathrm{RF}}=N_{s}进行的,但是可以将目标函数表示成特征值的形式并且证明NRF=NsN^{\mathrm{RF}}=N_{s}下的情况可以作为Ns<NRF<2NsN_{s}<N^{\mathrm{RF}}<2 N_{s}的一个上界近似。所以本文建议先设计NRF=NsN^{\mathrm{RF}}=N_{s}情况下的VRF\mathbf{V}_{\mathrm{RF}},然后再设计Ns<NRF<2NsN_{s}<N^{\mathrm{RF}}<2 N_{s}下的VD\mathbf{V}_{\mathrm{D}}。综上,整个点对点窄带场景下的混合波束赋形算法可以总结为:

在这里插入图片描述

大规模天线MU-MISO系统的场景

该场景下需要考虑用户间的干扰,对于用户kk,HBF下的速率可以表达为:
Rk=log2(1+hkHVRFvDk2σ2+khkHVRFvD2)R_{k}=\log _{2}\left(1+\frac{\left|\mathbf{h}_{k}^{H} \mathbf{V}_{\mathrm{RF}} \mathbf{v}_{\mathrm{D}_{k}}\right|^{2}}{\sigma^{2}+\sum_{\ell \neq k}\left|\mathbf{h}_{k}^{H} \mathbf{V}_{\mathrm{RF}} \mathbf{v}_{\mathrm{D}_{\ell}}\right|^{2}}\right)hkH\mathbf{h}_{k}^{H}是从BS到第kk个用户的信道,VD\mathbf{V}_{\mathrm{D}_{\ell}}表示的是digital precoderVD\mathbf{V}_{\mathrm{D}}\ell列。为了克服用户间干扰,在基站端使用ZF(zero-forcing)digital precoder。具体为:
VDZF=VRFHHH(HVRFVRFHHH)1P12=V~DP12\mathbf{V}_{\mathrm{D}}^{\mathrm{ZF}}=\mathbf{V}_{\mathrm{RF}}^{H} \mathbf{H}^{H}\left(\mathbf{H V}_{\mathrm{RF}} \mathbf{V}_{\mathrm{RF}}^{H} \mathbf{H}^{H}\right)^{-1} \mathbf{P}^{\frac{1}{2}}=\tilde{\mathbf{V}}_{\mathrm{D}} \mathbf{P}^{\frac{1}{2}}
其中H=[h1,,hK]H\mathbf{H}=\left[\mathbf{h}_{1}, \dots, \mathbf{h}_{K}\right]^{H}V~D=VRFHHH(HVRFVRFHHH)1\tilde{\mathbf{V}}_{\mathrm{D}}=\mathbf{V}_{\mathrm{RF}}^{H} \mathbf{H}^{H}\left(\mathbf{H} \mathbf{V}_{\mathrm{RF}} \mathbf{V}_{\mathrm{RF}}^{H} \mathbf{H}^{H}\right)^{-1}P=diag(p1,,pK)\mathbf{P}=\operatorname{diag}\left(p_{1}, \dots, p_{K}\right)pkp_{k}表示对kk个用户分配的功率。之所以ZFdigital precoder,因为其有一个很好的性质:hkHVRFvDkZF=pk\left|\mathbf{h}_{k}^{H} \mathbf{V}_{\mathrm{RF}} \mathbf{v}_{\mathrm{D}_{k}}^{Z \mathrm{F}}\right|=\sqrt{p_{k}}hkHVRFvDZF=0\left|\mathbf{h}_{k}^{\mathbf{H}} \mathbf{V}_{\mathrm{RF}} \mathbf{v}_{\mathrm{D}_{\ell}}^{\mathrm{ZF}}\right|=0。则此时的设计问题可以表示为:

在这里插入图片描述
其中Q~=V~DHVRFHVRFV~D\tilde{\mathbf{Q}}=\tilde{\mathbf{V}}_{\mathrm{D}}^{H} \mathbf{V}_{\mathrm{RF}}^{H} \mathbf{V}_{\mathrm{RF}} \tilde{\mathbf{V}}_{\mathrm{D}},该问题有可以很容易的通过注水算法求得:pk=1q~kkmax{βkλq~kkσ2,0}p_{k}=\frac{1}{\tilde{q}_{k k}} \max \left\{\frac{\beta_{k}}{\lambda}-\tilde{q}_{k k} \sigma^{2}, 0\right\}其中q~kk\tilde{q}_{k k}Q~\tilde{\mathrm{Q}}的第kk个对角线元素。λ\lambda满足k=1Kmax{βkλq~kkσ2,0}=P\sum_{k=1}^{K} \max \left\{\frac{\beta_{k}}{\lambda}-\tilde{q}_{k k} \sigma^{2}, 0\right\}=P
在ZF precoder设计好的情况下,可以看出总速率取决于功率约束中的VRF\mathbf{V}_{\mathrm{RF}},因此RF precoder的设计问题可以转化为功率最小化问题,即:minVRFf(VRF) s.t. VRF(i,j)2=1,i,j\begin{array}{ll}{\min _{\mathbf{V}_{\mathrm{RF}}}} & {f\left(\mathbf{V}_{\mathrm{RF}}\right)} \\ {\text { s.t. }} & {\left|\mathbf{V}_{\mathrm{RF}}(i, j)\right|^{2}=1, \forall i, j}\end{array}其中f(VRF)=Tr(VRFV~DPV~DHVRFH)f\left(\mathbf{V}_{\mathrm{RF}}\right)=\operatorname{Tr}\left(\mathbf{V}_{\mathrm{RF}} \tilde{\mathbf{V}}_{\mathrm{D}} \mathbf{P} \tilde{\mathbf{V}}_{\mathrm{D}}^{H} \mathbf{V}_{\mathrm{RF}}^{H}\right)。使用VRFHVRFNI\mathbf{V}_{\mathrm{RF}}^{H} \mathbf{V}_{\mathrm{RF}} \approx N \mathbf{I}的近似有:

在这里插入图片描述
其中H~=P12H\tilde{\mathbf{H}}=\mathbf{P}^{-\frac{1}{2}} \mathbf{H}。还是与窄带情况下的思路一样,求出VRF(i,j)\mathbf{V}_{\mathrm{RF}}(i, j)对目标函数的贡献。因此有:
f^(VRF)=NTr(Aj1)NζijB+2Re{VRF(i,j)ηijB}1+ζijD+2Re{VRF(i,j)ηijD}\hat{f}\left(\mathbf{V}_{\mathrm{RF}}\right)=N \operatorname{Tr}\left(\mathbf{A}_{j}^{-1}\right)-N \frac{\zeta_{i j}^{B}+2 \operatorname{Re}\left\{\mathbf{V}_{\mathrm{RF}}^{*}(i, j) \eta_{i j}^{B}\right\}}{1+\zeta_{i j}^{D}+2 \operatorname{Re}\left\{\mathbf{V}_{\mathrm{RF}}^{*}(i, j) \eta_{i j}^{D}\right\}}
假设除VRF(i,j)=ejθi,j\mathbf{V}_{\mathrm{RF}}(i, j)=e^{-j \theta_{i, j}}之外的元素均固定,VRF(i,j)=ejθi,j\mathbf{V}_{\mathrm{RF}}(i, j)=e^{-j \theta_{i, j}}更新的规则为:θi,j(1)=ϕi,j+sin1(zijcij)θi,j(2)=πϕi,jsin1(zijcij)\begin{aligned} \theta_{i, j}^{(1)} &=-\phi_{i, j}+\sin ^{-1}\left(\frac{z_{i j}}{\left|c_{i j}\right|}\right) \\ \theta_{i, j}^{(2)} &=\pi-\phi_{i, j}-\sin ^{-1}\left(\frac{z_{i j}}{\left|c_{i j}\right|}\right) \end{aligned}其中cij=(1+ζijD)ηijBζijBηijD,zij=Im{2(ηijB)ηijD}c_{i j}=\left(1+\zeta_{i j}^{D}\right) \eta_{i j}^{B}-\zeta_{i j}^{B} \eta_{i j}^{D}, z_{i j}=\operatorname{Im}\left\{2\left(\eta_{i j}^{B}\right)^{*} \eta_{i j}^{D}\right\},且:
在这里插入图片描述
最优θi,j\theta_{i, j}可表示为:θi,jopt=argminθi,j(1),θi,j(2)(f^(θi,j(1)),f^(θi,j(2)))\theta_{i, j}^{\mathrm{opt}}=\underset{\theta_{i, j}^{(1)}, \theta_{i, j}^{(2)}}{\arg \min }\left(\hat{f}\left(\theta_{i, j}^{(1)}\right), \hat{f}\left(\theta_{i, j}^{(2)}\right)\right)
通过交替迭代P\mathbf{P}VRF\mathbf{V}_{\mathrm{RF}}就可以得到最优的HBF设计。综上,MU-MISO下的HBF算法为:

在这里插入图片描述

仿真结果

MIMO系统下的HBF性能

考虑一个64×16MIMO64 \times 16 \mathrm{MIMO}系统, NRF=Ns=6N^{\mathrm{RF}}=N_{s}=6,与FD方法、[25]、[27]进行了比较,分别有1dB、1.5dB的提升,更加接近于FD。


在这里插入图片描述

MU-MISO下的HBF性能

考虑一个8用户,基站端发射天线N=64N=64的MU-MISO系统。假设每个用户的优先级相同,即:βk=1,k\beta_{k}=1, \forall k,作者比较了所提出算法在K+1=9K+1=9条射频链和K=8K=8条射频链下[33]与[32]中的算法。提出的算法在额外增加一条射频链的强看下与全数字ZF波束形成速率非常接近,它将[33]中的方法改进了约1 dB。


在这里插入图片描述

结论: 数值计算结果表明,所提出方法的性能在MIMO和MU-MISO场景下均十分接近全数字波束形成方案。虽然本文所提出的算法都需要完美的CSI,但它们都可以作为混合波束赋形结构最大可达速率的基准。因此在很多新的HBF算法在进行性能分析时,会同该算法进行比较。

注意:本文中介绍的算法考虑的是无限精度下的移相器。文中还分析了有限精度下的HBF算法,具体可参照论文链接。

展开阅读全文

没有更多推荐了,返回首页