Pycharm2019 十二个tool windows工具详解

前言 一直使用pycharm,但对于不熟悉的窗口一直当作不存在没去管,直到今天无聊去看才如同打开了新世界的大门 极其常用的 project 一般显示在左边,可以看整个项目下的文件路径。 find 显示查找的结果,如在XX文件的XX行出现 Run 运行代码时会自动弹出,展示运行结果 pyt...

2019-03-30 18:36:34

阅读数 34340

评论数 0

windows下无法直接pip安装的库的解决办法记录

pyautogui 直接pip install pyautogui会报错,原因不明。 解决方法:pip install PyAutoGUI==0.9.33.

2019-03-28 12:59:43

阅读数 34204

评论数 0

Windows配置tensorflow-gpu环境:最新,最快速,容错率最高的方法,没有之一。

本方法优点 不需要逐个自己安装cuda, cudnn甚至vs2015等坑爹玩意 不会直接在自己电脑上装cuda,防止各种路径混乱之类。 可以多个cuda兼容操作 可以完美的在不影响已有tf1.0系列的情况下,完美使用tf2.0 对于绝大部分读者,第一条已经是足够的理由了,毕竟现在大部分的博客攻略...

2019-03-24 18:06:07

阅读数 41230

评论数 2

最新jupyter notebook配置踩坑大全

下载anaconda 自带会下载jupyter notebook 需要注意的是,该jupyter只存在在base环境下,所以其他环境下还需要另外下载 例如,我使用的tensorflow1.12版本和anaconda初始的python3.7不搭,因此 conda create -n python...

2019-03-19 23:24:11

阅读数 34092

评论数 0

DQN的多种改进(1)

1.N-step DQN N-step DQN的核心是将bellman方程展开,即 Q(st,at)=rt+γrt+1+γ2maxa′Q(st+2,a′)Q(s_t,a_t) = r_t + \gamma r_{t+1} + \gamma^2 max_{a'}Q(...

2019-03-08 21:27:35

阅读数 34145

评论数 0

用pytorch简单实现DQN

本文内容参考 《Deep Reinforcement Learning Hands-On》第六章 这篇博客默认读者已经熟悉Q-learning。 DQN算法 初始化Q网络和target_Q网络, ϵ=1\epsilon = 1ϵ=1。 以 ϵ\epsilonϵ 的概率随机选取动作aaa, 否则a...

2019-03-08 16:57:01

阅读数 34334

评论数 0

近日深度学习调参心得:应对DNN中的过拟合

开门见山 应对过拟合最后的结论: 增大数据集 若训练集性能下滑, 增大网络深度 考虑使用卷积神经网络, 相比于dense层,参数更少,更易收敛优化。 前因后果 由于我是使用深度神经网络来处理通信中的一些优化问题,更偏向于理论方面,因此在深度学习的应用中相比其他领域有着得天独厚的优势:根据已有模...

2019-03-06 11:59:05

阅读数 34017

评论数 0

提示
确定要删除当前文章?
取消 删除