面试问答:什么是端到端(明确端是输入端到输出端)的学习

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_39306118/article/details/90408228

端到端
1.指的是输入是原始数据,输出是最后的结果,端到端深度学习模型在训练过程中,从输入端(输入数据)到输出端会得到一个预测结果,与真实结果相比较会得到一个误差,这个误差会在模型中的每一层传递(反向传播),每一层的表示都会根据这个误差来做调整,直到模型收敛或达到预期的效果才结束,这是端到端的。
2.其次说一下非端到端的输入端不是直接的原始数据,而是在原始数据中提取的特征,这一点在图像问题上尤为突出,因为图像像素数太多,数据维度高,会产生维度灾难,所以原来一个思路是手工提取图像的一些关键特征,这实际就是就一个降维的过程。
手工特征需要足够的经验去设计,这在数据量越来越大的情况下也越来越困难。就出现了端到端网络,特征可以自己去学习,所以特征提取这一步也就融入到算法当中,不需要人来干预了。
这就是为什么图像算法不需要特征工程的原因,CNN卷积就是突破所在,能提的特征都提了

展开阅读全文

没有更多推荐了,返回首页