机器学习-非参数估计

非参数模型(在AI 也叫作cased-based reasoning instance-based learning, case-based or memory-based)

非参数模型在相似度定义上不同,没有global model,local model 随着需要而估计,只受nearby 训练实例影响
不需要prior参数形式 复杂度取决于训练集的大小或者数据内部的复杂问题
非参数模型也成做实例-based 或者memory-based 学习算法
左右的训练实例存储O(N)的内存,根据所给输入找相似输出的计算量也是O(N),也称作lazy学习算法。不用马上计算模型,而是在给测试实例时在计算,缺点是对内存和计算能力的需求增加
相似输入有相似输出

非参数密度估计

在这里插入图片描述

  • 对累积分布函数的非参数估计
  • 对密度函数的非参数估计
    h是tiny interval

直方估计

输入空间划分为等大小的intervals->bins,x0 原点,bin(宽度h)[xo + mh, xo + (m + 1)h),
在这里插入图片描述
超参数-需要选择x0和h
x0原点->影响bins的near 边界估计
h->影响估计的smoothness,小bins,估计就spiky;大bins,估计更平滑
直方估计的优点是 一旦bin估计计算和存储,则无需保留训练集
不连续:如果在bin边界且估计值为0

Naive 估计器

(不用设置原点, x总是在bin的zise h 中心)两种写法:
在这里插入图片描述
在这里插入图片描述
不连续 在 h t + − h / 2 h^{t}+-h/2 ht+h/2处跳跃,影响区域是0/1,非参数估计为sum of x t x^{t} xt的influence(包含x的区域)
每个x^{t}有对称region of influence(size h )around it 对于x落在该区域的贡献为1

Kernel 估计器

为了平滑估计,用平滑权重函数,kernel function
在这里插入图片描述
小h->每个实例在小范围内影响大
大h->更多kernel 的overlap,得到更平滑的估计
但是窗口宽度固定,需要自适应的方法。

K 临近估计

根据本地数据的密度适应平滑的数量
到neighbor的距离
在这里插入图片描述
类似于naive 估计:这里确定K,让实例都到bin里,计算bin的size(而不是确定h):在这里插入图片描述

knn密度估计(不连续):
在这里插入图片描述
不平滑但可以用kernel function:在这里插入图片描述

多元数据的泛化Generalization to Multivariate Data

在这里插入图片描述

  • 非参数估计用在高维空间要小心维数灾难(curse of dimensionality)
  • 高维中,close变得模糊,所以选择h很重要
  • 欧式范数表明the kernel is scaled equally on all dimensions
  • 不同scale的输入需要归一化使他们的variance相同
    考虑correlations相关性,better results are achieved when the kernel has the same form as the underlying distribution,用样本协方差(sample covariance matrix)
    在这里插入图片描述

非参数分类

用非参数方法估计class-conditional densities, 后验=likelihood*先验
在这里插入图片描述
投票的权重由kernel function K(·)给出,closer 实例有更多的权重
特别的,KNN,K为奇数减少ties,把输入分到其k个邻居占的most examples 的class
k越小, variance越大, bias小;
k越大,var小,bias大。
在这里插入图片描述
Voronoi tesselation:knn, k=1的特例

自适应的NN

适应度量通过向class 概率不变的方向伸展
高维空间中,类别分布可能只在低维子空间改变,因此自适应度量是很重要的优点
当在高维特征空间中做最近邻分类时,最近邻的点可以离得非常远,带来偏差,并且降低了分类器的效果.
在这里插入图片描述
一般地,这要求最近邻分类中采用自适应的度量,使得得到的邻域沿着类别不会改变太多的方向上拉伸.
不同的metric 在每查询query点使用,根据neighborhood的类别分布
在各类中计算covariance
判别自适应最近邻DNN:
在每个查询点,构造其大小为 50 个点的邻域,并且用这些点的类别分布来决定怎么对邻域进行变形——也就是,对度量进行更新.接着更新后的度量用在该查询点的最近邻规则中.因此每一个查询点都可能采用不同的度量.
假设一个局部判别模型,局部 类别内 (within-) 和 类别间 (between-) 协方差矩阵的信息就足以确定邻居的最优形状.
判别自适应最近邻DANN在查询点x0的度量定义:
在这里插入图片描述类内协方差W,类间协方差B

它首先将数据关于 W进行球面化,接着沿着 B*(球面化数据的类间方差)的零特征值方向拉伸邻域.参数 ϵ 围绕着邻域,从无穷的长条到椭球,避免使用离查询点过远的点.一般 ϵ=1 的效果很好.

  • data 根据W球面化分布
  • neighborhood延伸到B的零特征值方向
  • 四舍五入邻域,从无限长条变为ellipsoid椭圆
  • 邻域保持椭圆 在pure regions with 只有一类时(B=0,covariance矩阵是单位阵)

condensed NN

The core idea of the algorithm is that if the instance cannot be correctly classified by the currently selected set, the selected set is added.(CR: http://www.pudn.com/Download/item/id/3148619.html )
在不降低效果的情况下较少存储的实例数量 选最小的子集,用其替代原集合时误差不增加
在这里插入图片描述
是一种贪婪算法,目的是最小化训练误差和复杂度,用存储的subset大小来measure。寻找z,每个用存起来的z判断是否正确被1-nn分类,分裂错误则被加到z,直到z不变
是一种局部搜索,依赖训练实例出现的顺序,不保证找到最小consistent subset,NP完全问题。增广误差函数:在这里插入图片描述
在这里插入图片描述第二项类似正则化项

原型方法 (prototype methods)

用特征空间中的点集来表示训练数据.这些原型通常不是训练样本的实例,除了后面讨论的 1-最近邻分类情形.
https://esl.hohoweiya.xyz/13-Prototype-Methods-and-Nearest-Neighbors/13.2-Prototype-Methods/index.html
每个原型有其对应的类别标签,并且将查询点
x分到“最近的”原型类别中.“最近的”通常是由特征空间中的欧氏距离定义的,在计算欧式距离前,需要将训练样本中的每个特征进行标准化后使其均值为 0,方差为 1.
K-means

  • 对于每个类别,其它类的点对该类的原型所在位置没有影响.
  • 很多原型靠近类别边界,导致离这些边界很近的点有潜在的误分类误差
    更好的方式是用所有的数据确定原型的位置

learning Vector optimiazation量化学习向量

在 Kohonen(1989)1 的这种技术中,原型是按照 特定 (ad-hoc) 的策略放在判别边界上的.LVQ 是一种 online 的算法——每次处理一个观测值.

想法是训练点吸引正确类别的原型,同时排斥其它的原型.迭代完成时,原型应该与它们类别中的训练点很近.
学习速率 ϵ 随着每次迭代的进行降低至 0,遵循随机近似学习率的指导原则.
在这里插入图片描述

高斯混合模型(更加光滑)

也可以看成是原型方法,思想上类似K均值和LVQ
每个簇用高斯密度来描述,有一个形心(如在
K均值中一样),以及一个协方差矩阵.如果我们现在每个组分的高斯分布有标量化的协方差矩阵,这种比较变得更加清晰.轮流进行EM算法的过程与K均值中的两个步骤很类似.
在这里插入图片描述
https://esl.hohoweiya.xyz/13-Prototype-Methods-and-Nearest-Neighbors/13.2-Prototype-Methods/index.html

  • 0
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
机器学习是一种人工智能(AI)的子领域,致力于研究如何利用数据和算法让计算机系统具备学习能力,从而能够自动地完成特定任务或者改进自身性能。机器学习的核心思想是让计算机系统通过学习数据中的模式和规律来实现目标,而不需要显式地编程。 机器学习应用非常广泛,包括但不限于以下领域: 图像识别和计算机视觉: 机器学习在图像识别、目标检测、人脸识别、图像分割等方面有着广泛的应用。例如,通过深度学习技术,可以训练神经网络来识别图像中的对象、人脸或者场景,用于智能监控、自动驾驶、医学影像分析等领域。 自然语言处理: 机器学习在自然语言处理领域有着重要的应用,包括文本分类、情感分析、机器翻译、语音识别等。例如,通过深度学习模型,可以训练神经网络来理解和生成自然语言,用于智能客服、智能助手、机器翻译等场景。 推荐系统: 推荐系统利用机器学习算法分析用户的行为和偏好,为用户推荐个性化的产品或服务。例如,电商网站可以利用机器学习算法分析用户的购买历史和浏览行为,向用户推荐感兴趣的商品。 预测和预测分析: 机器学习可以用于预测未来事件的发生概率或者趋势。例如,金融领域可以利用机器学习算法进行股票价格预测、信用评分、欺诈检测等。 医疗诊断和生物信息学: 机器学习在医疗诊断、药物研发、基因组学等领域有着重要的应用。例如,可以利用机器学习算法分析医学影像数据进行疾病诊断,或者利用机器学习算法分析基因数据进行疾病风险预测。 智能交通和物联网: 机器学习可以应用于智能交通系统、智能城市管理和物联网等领域。例如,可以利用机器学习算法分析交通数据优化交通流量,或者利用机器学习算法分析传感器数据监测设备状态。 以上仅是机器学习应用的一部分,随着机器学习技术的不断发展和应用场景的不断拓展,机器学习在各个领域都有着重要的应用价值,并且正在改变我们的生活和工作方式。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值