你特叔

GitHub: https://github.com/Hunter1023

01-复杂度1 最大子列和问题(20 分)

  给定K个整数组成的序列{ N1,N2,...,NK},“连续子列”被定义为{Ni,Ni+1,...,Nj},其中 1 ≤ i ≤ j ≤ K。“最大子列和”则被定义为所有连续子列元素的和中最大者。例如给定序列{ -2, 11, -4, 13, -5, -2 },其连续子列{ 11, -4, 13 }有最大的和20。现要求你编写程序,计算给定整数序列的最大子列和。
  本题旨在测试各种不同的算法在各种数据情况下的表现。各组测试数据特点如下:
  数据1:与样例等价,测试基本正确性;
  数据2:102个随机整数;
  数据3:103个随机整数;
  数据4:104个随机整数;
  数据5:105个随机整数;

输入格式:

  输入第1行给出正整数K (≤100000);第2行给出K个整数,其间以空格分隔。

输出格式:

  在一行中输出最大子列和。如果序列中所有整数皆为负数,则输出0。

输入样例:

6
-2 11 -4 13 -5 -2

输出样例:

20


以下给出3种算法,依次优化


遍历算法

/**
* 遍历方法
* @param arr    传入数组
* @return   最大子列和
*/
public static int Traverse(int[] arr) {
    int maxSum = 0;//初始化最大子列和
        int currentSum;//声明当前子列和
        //遍历数组,获取最大子列和  
        for(int i = 0; i < arr.length; i++) {//子列的起始下标
            currentSum = 0;//子列起始下标变动时,重新计算当前子列和
            for(int j = i; j < arr.length; j++) {//子列的终止下标
                currentSum += arr[j];
                if(currentSum > maxSum) {
                    maxSum = currentSum;//更新最大子列和
                }
            }
        }
        return maxSum;
    }

分而治之(递归思想)

/* 分治法求List[left]到List[right]的最大子列和 */
public static int DivideAndConquer(int[] List, int left, int right) {
    int MaxLeftSum, MaxRightSum; /* 存放左右子问题的解 */
    int MaxLeftBorderSum, MaxRightBorderSum; /* 存放跨分界线的结果 */

    int LeftBorderSum, RightBorderSum;
    int center;

    if (left == right) { /* 递归的终止条件,子列只有1个数字 */
        if (List[left] > 0)//如果元素大于0,返回该元素;否则返回0
            return List[left];
        else
            return 0;
    }

    /* 下面是"分"的过程 */
    center = (left + right) / 2; //中分点
    //递归求得两边子列的最大和
    MaxLeftSum = DivideAndConquer(List, left, center);
    MaxRightSum = DivideAndConquer(List, center + 1, right);

    /* 求跨分界线的最大子列和 */
    MaxLeftBorderSum = 0;//最大的左跨界和
    LeftBorderSum = 0;//当前左跨界和
    for (int i = center; i >= left; i--) { //从中线向左扫描,获得最大左跨界和
        LeftBorderSum += List[i];
        if (LeftBorderSum > MaxLeftBorderSum)
            MaxLeftBorderSum = LeftBorderSum;
    }

    MaxRightBorderSum = 0;//最大的右跨界和
    RightBorderSum = 0;//当前右跨界和
    for (int i = center + 1; i <= right; i++) { //从中线向右扫描,获得最大右跨界和
        RightBorderSum += List[i];
        if (RightBorderSum > MaxRightBorderSum)
            MaxRightBorderSum = RightBorderSum;
    } 

    /* 下面返回"治"的结果 */
    return Max3(MaxLeftSum, MaxRightSum, MaxLeftBorderSum + MaxRightBorderSum);
}
public static int Max3(int A, int B, int C) { /* 返回3个整数中的最大值 */
    return A > B ? (A > C ? A : C) : (B > C ? B : C);
}

在线处理(最优算法)

    public static int onlineProcess(int[] arr) {
        int thisSum = 0, maxSum = 0;// 初始化当前和、最大和为0

        for (int i = 0; i < arr.length; i++) {
            thisSum += arr[i];// 向右累加
            if (thisSum > maxSum) {
                maxSum = thisSum;
            } else if (thisSum < 0) {//如果当前子列为负,因为不可能使后面的部分和增大,所以重新计算部分和。
                thisSum = 0;
            }
        }
        return maxSum;
    }
阅读更多
文章标签: Java 算法
下一篇01-复杂度2 Maximum Subsequence Sum(25 分)
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭