Stream API
Stream 常见操作(后面还会有案例说明)
- Stream对象的创建
Stream对象分为两种,一种串行的流对象,一种并行的流对象

- filter
对Stream中的元素进行过滤操作,当设置条件返回true时返回相应元素

- map
对Stream中的元素进行转换处理后获取。比如可以将a对象转换成b对象。 我们经常会有这样的需求:需要把某些对象的id提取出来,然后根据这些id去查询其他对象,这时可以使用此方法

- limit
从Stream中获取指定数量的元素

- count
仅获取Stream中元素的个数

- sorted
对Stream中元素按指定规则进行排序

tip:注意,如果要使用Comparator.reverseOrder()来进行自然降序,那么在流中的对象要实现Comparable< T >接口
@Data
public class Person implements Comparable<Person>{
public long id;
public String name;
public Person(long id, String name){
this.id = id;
this.name = name;
}
@Override
public int compareTo(Person e) {
return name.compareTo(e.getName());
}
@Override
public boolean equals(final Object obj) {
if (obj == null) {
return false;
}
final Person p = (Person) obj;
if (this == p) {
return true;
} else {
return (this.name.equals(p.name) && (this.id == p.id));
}
}
@Override
public int hashCode() {
int hashno = 7;
hashno = 13 * hashno + (name == null ? 0 : name.hashCode());
return hashno;
}
}
- skip
跳过指定个数的Stream中元素,获取后面的元素

- 用collect方法将List转成map
有时候我们需要反复对List中的对象根据id进行查询,我们可以先把该List转换为以id为key的map结构,然后再通过map.get(id)来获取对象,这样比较方便

使用Arrays 中的 stream() 方法,将数组转成流

使用Stream中的静态方法:of()、iterate()、generate()

使用 BufferedReader.lines() 方法,将每行内容转成流

使用 Pattern.splitAsStream() 方法,将字符串分隔成流

IDEAL中建议Pattern应该设置为静态变量

例如:
private static Pattern STRING_PATTERN = Pattern.compile(",");
流的中间操作
- 筛选与切片
filter:过滤流中的某些元素
limit(n):获取n个元素
skip(n):跳过n元素,配合limit(n)可实现分页
distinct:通过流中元素的 hashCode() 和 equals() 去除重复元素
Stream<Integer> stream = Stream.of(6, 4, 6, 7, 3, 9, 8, 10, 12, 14, 14);
Stream<Integer> newStream = stream.filter(s -> s > 5) //6 6 7 9 8 10 12 14 14
.distinct() //6 7 9 8 10 12 14
.skip(2) //9 8 10 12 14
.limit(2); //9 8
newStream.forEach(System.out::println);
- 映射
map:接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。
flatMap:接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。
List<String> list = Arrays.asList("a,b,c", "1,2,3");
//将每个元素转成一个新的且不带逗号的元素
Stream<String> stream4 = list.stream().map(e -> e.replaceAll(",", ""));
stream4.forEach(System.out::println);
Stream<String> stream5 = list.stream().flatMap(s -> {
//将每个元素转换成一个stream
String[] split = s.split(",");
Stream<String> s1 = Arrays.stream(split);
return s1;
});
stream5.forEach(System.out::println);
- 排序
sorted():自然排序,流中元素需实现Comparable接口
sorted(Comparator com):定制排序,自定义Comparator排序器
List<String> list = Arrays.asList("aa", "ff", "dd");
//String 类自身已实现Compareable接口
list.stream().sorted().forEach(System.out::println);// aa dd ff
Student s1 = new Student("aa", 10);
Student s2 = new Student("bb", 20);
Student s3 = new Student("aa", 30);
Student s4 = new Student("dd", 40);
List<Student> studentList = Arrays.asList(s1, s2, s3, s4);
//自定义排序:先按姓名升序,姓名相同则按年龄升序
studentList.stream().sorted(
(o1, o2) -> {
if (o1.getName().equals(o2.getName())) {
return o1.getAge() - o2.getAge();
} else {
return o1.getName().compareTo(o2.getName());
}
}
).forEach(System.out::println);
- 消费
peek:如同于map,能得到流中的每一个元素。但map接收的是一个Function表达式,有返回值;而peek接收的是Consumer表达式,没有返回值。

结果:

流的终止操作
- 匹配、聚合操作
allMatch:接收一个 Predicate 函数,当流中每个元素都符合该断言时才返回true,否则返回false。
noneMatch:接收一个 Predicate 函数,当流中每个元素都不符合该断言时才返回true,否则返回false。
anyMatch:接收一个 Predicate 函数,只要流中有一个元素满足该断言则返回true,否则返回false。
findFirst:返回流中第一个元素。
findAny:返回流中的任意元素。
count:返回流中元素的总个数。
max:返回流中元素最大值。
min:返回流中元素最小值。
List<Integer> list = Arrays.asList(1, 2, 3, 4, 5);
boolean allMatch = list.stream().allMatch(e -> e > 10); //false
boolean noneMatch = list.stream().noneMatch(e -> e > 10); //true
boolean anyMatch = list.stream().anyMatch(e -> e > 4); //true
Integer findFirst = list.stream().findFirst().get(); //1
Integer findAny = list.stream().findAny().get(); //1
long count = list.stream().count(); //5
Integer max = list.stream().max(Integer::compareTo).get(); //5
Integer min = list.stream().min(Integer::compareTo).get(); //1
- 规约操作
Optional reduce(BinaryOperator accumulator):第一次执行时,accumulator函数的第一个参数为流中的第一个元素,第二个参数为流中元素的第二个元素;第二次执行时,第一个参数为第一次函数执行的结果,第二个参数为流中的第三个元素;依次类推。
T reduce(T identity, BinaryOperator accumulator):流程跟上面一样,只是第一次执行时,accumulator函数的第一个参数为identity,而第二个参数为流中的第一个元素。
U reduce(U identity,BiFunction<U, ? super T,U>accumulator,BinaryOperator combiner):在串行流(stream)中,该方法跟第二个方法一样,即第三个参数combiner不会起作用。在并行流(parallelStream)中,我们知道流被fork join出多个线程进行执行,此时每个线程的执行流程就跟第二个方法reduce(identity,accumulator)一样,而第三个参数combiner函数,则是将每个线程的执行结果当成一个新的流,然后使用第一个方法reduce(accumulator)流程进行规约。
List<Integer> list = new ArrayList<>(16);
for (int i=1;i<=24;i++){
list.add(i);
}
//TIP:经过测试,当元素个数小于24时,并行时线程数等于元素个数,当大于等于24时,并行时线程数为16
//Optional reduce(BinaryOperator accumulator):
// 第一次执行时,accumulator函数的第一个参数为流中的第一个元素,第二个参数为流中元素的第二个元素;
// 第二次执行时,第一个参数为第一次函数执行的结果,第二个参数为流中的第三个元素;依次类推。
Integer v1 = list.stream().reduce((e1, e2) -> e1 + e2).get();
System.out.println(v1);
//T reduce(T identity, BinaryOperator accumulator):
// 流程跟上面一样,只是第一次执行时,accumulator函数的第一个参数为identity,
// 而第二个参数为流中的第一个元素。
Integer v2 = list.stream().reduce(10, (e1, e2) -> e1 + e2);
System.out.println(v2);
//U reduce(U identity,BiFunction<U, ? super T, U> accumulator,BinaryOperator combiner):
// 在串行流(stream)中,该方法跟第二个方法一样,即第三个参数combiner不会起作用。
// 在并行流(parallelStream)中,我们知道流被fork join出多个线程进行执行,
// 此时每个线程的执行流程就跟第二个方法reduce(identity,accumulator)一样,
// 而第三个参数combiner函数,则是将每个线程的执行结果当成一个新的流,
// 然后使用第一个方法reduce(accumulator)流程进行规约。
//以下是串行流,第三个参数不起作用
Integer v3 = list.stream().reduce(0,
(e1, e2) -> {
System.out.println("stream accumulator:e1" + e1 + "e2:" + e2);
return e1 - e2;
},
(e1, e2) -> {
System.out.println("stream combiner:e1" + e1 + "e2:" + e2);
return e1 * e2;
});
System.out.println(v3);
//以下是并行流
Integer v4 = list.parallelStream().reduce(0,
(x1, x2) -> {
System.out.println("parallelStream accumulator: x1:" + x1 + " x2:" + x2);
return x1 - x2;
},
(x1, x2) -> {
System.out.println("parallelStream combiner: x1:" + x1 + " x2:" + x2);
return x1 * x2;
});
System.out.println(v4); //197474048
收集操作
collect:接收一个Collector实例,将流中元素收集成另外一个数据结构。
Collector<T, A, R> 是一个接口,有以下5个抽象方法:
- Supplier< A > supplier():创建一个结果容器A
- BiConsumer< A, T > accumulator():消费型接口,第一个参数为容器A,第二个参数为流中元素T。
- BinaryOperator< A > combiner():函数接口,该参数的作用跟上一个方法(reduce)中的combiner参数一样,将并行流中各 个子进程的运行结果(accumulator函数操作后的容器A)进行合并。
- Function<A, R> finisher():函数式接口,参数为:容器A,返回类型为:collect方法最终想要的结果R。
- Set< Characteristics > characteristics():返回一个不可变的Set集合,用来表明该Collector的特征。有以下三个特征:
- CONCURRENT:表示此收集器支持并发。(官方文档还有其他描述,暂时没去探索,故不作过多翻译)
- UNORDERED:表示该收集操作不会保留流中元素原有的顺序。
- IDENTITY_FINISH:表示finisher参数只是标识而已,可忽略。
Collector 工具库:Collectors
Student s1 = new Student("aa", 10,1);
Student s2 = new Student("bb", 20,2);
Student s3 = new Student("cc", 10,3);
List<Student> list = Arrays.asList(s1, s2, s3);
//装成list
List<Integer> ageList = list.stream().map(Student::getAge).collect(Collectors.toList()); // [10, 20, 10]
//转成set
Set<Integer> ageSet = list.stream().map(Student::getAge).collect(Collectors.toSet()); // [20, 10]
//转成map,注:key不能相同,否则报错
Map<String, Integer> studentMap = list.stream().collect(Collectors.toMap(Student::getName, Student::getAge)); // {cc=10, bb=20, aa=10}
//字符串分隔符连接
String joinName = list.stream().map(Student::getName).collect(Collectors.joining(",", "(", ")")); // (aa,bb,cc)
//聚合操作
//1.学生总数
Long count = list.stream().collect(Collectors.counting()); // 3
//2.最大年龄 (最小的minBy同理)
Integer maxAge = list.stream().map(Student::getAge).collect(Collectors.maxBy(Integer::compare)).get(); // 20
//3.所有人的年龄
Integer sumAge = list.stream().collect(Collectors.summingInt(Student::getAge)); // 40
//4.平均年龄
Double averageAge = list.stream().collect(Collectors.averagingDouble(Student::getAge)); // 13.333333333333334
// 带上以上所有方法
DoubleSummaryStatistics statistics = list.stream().collect(Collectors.summarizingDouble(Student::getAge));
System.out.println("count:" + statistics.getCount() + ",max:" + statistics.getMax() + ",sum:" + statistics.getSum() + ",average:" + statistics.getAverage());
//分组
Map<Integer, List<Student>> ageMap = list.stream().collect(Collectors.groupingBy(Student::getAge));
//多重分组,先根据类型分再根据年龄分
Map<Integer, Map<Integer, List<Student>>> typeAgeMap = list.stream().collect(Collectors.groupingBy(Student::getType, Collectors.groupingBy(Student::getAge)));
//分区
//分成两部分,一部分大于10岁,一部分小于等于10岁
Map<Boolean, List<Student>> partMap = list.stream().collect(Collectors.partitioningBy(v -> v.getAge() > 10));
//规约
Integer allAge = list.stream().map(Student::getAge).collect(Collectors.reducing(Integer::sum)).get(); //40
Stream的介绍就到这里
JAVA 中的 OPTIONAL
从 Java 8 引入的一个很有趣的特性是 Optional 类。Optional 类主要解决的问题是臭名昭著的空指针异常(NullPointerException)
本质上,这是一个包含有可选值的包装类,这意味着 Optional 类既可以含有对象也可以为空。
为什么使用OPTIONAL
因为在 Java 8 之前,任何访问对象方法或属性的调用都可能导致 NullPointerException:
在这个小示例中,如果我们需要确保不触发异常,就得在访问每一个值之前对其进行明确地检查
if (user != null) {
Address address = user.getAddress();
if (address != null) {
Country country = address.getCountry();
if (country != null) {
String isocode = country.getIsocode();
if (isocode != null) {
isocode = isocode.toUpperCase();
}
}
}
}
创建 Optional 实例
你可以使用 of() 和 ofNullable() 方法创建包含值的 Optional。两个方法的不同之处在于如果你把 null 值作为参数传递进去,of() 方法会抛出 NullPointerException:

如果对象即可能是 null 也可能是非 null,应该使用 ofNullable() 方法
访问 Optional 对象的值
从 Optional 实例中取回实际值对象的方法之一是使用 get() 方法

这里需要注意,这个方法会在值为 null 的时候抛出异常。要避免异常,你可以选择首先验证是否有值:可以通过isPresent()方法验证Optional中是否有值
检查是否有值的另一个选择是 ifPresent() 方法。该方法除了执行检查,还接受一个Consumer(消费者) 参数,如果对象不是空的,就对执行传入的 Lambda 表达式:

返回默认值
Optional 类提供了 API 用以返回对象值,或者在对象为空的时候返回默认值。
这里你可以使用的第一个方法是 orElse(),它的工作方式非常直接,如果有值则返回该值,否则返回传递给它的参数值:

第二个同类型的 API 是 orElseGet() —— 其行为略有不同。这个方法会在有值的时候返回值,如果没有值,它会执行作为参数传入的 Supplier(供应者) 函数式接口,并将返回其执行结果:

orElse() 和 orElseGet() 的不同之处
乍一看,这两种方法似乎起着同样的作用。然而事实并非如此。我们创建一些示例来突出二者行为上的异同
我们先来看看对象为空时他们的行为:

上面的代码中,两种方法都调用了 createNewUser() 方法,这个方法会记录一个消息并返回 User 对象。
代码输出如下:

由此可见,当对象为空而返回默认对象时,行为并无差异。
我们接下来看一个类似的示例,但这里 Optional 不为空:

这次的输出:

这个示例中,两个 Optional 对象都包含非空值,两个方法都会返回对应的非空值。不过,orElse() 方法仍然创建了 User 对象。与之相反,orElseGet() 方法不创建 User 对象。
在执行较密集的调用时,比如调用 Web 服务或数据查询,这个差异会对性能产生重大影响。
返回异常
除了 orElse() 和 orElseGet() 方法,Optional 还定义了 orElseThrow() API —— 它会在对象为空的时候抛出异常,而不是返回备选的值:

转换值
有很多种方法可以转换 Optional 的值。我们从 map() 和 flatMap() 方法开始。

map() 对值应用(调用)作为参数的函数,然后将返回的值包装在 Optional 中。这就使对返回值进行链试调用的操作成为可能 —— 这里的下一环就是 orElse()。

过滤值
除了转换值之外,Optional 类也提供了按条件“过滤”值的方法。
filter() 接受一个 Predicate 参数,返回测试结果为 true 的值。如果测试结果为 false,会返回一个空的 Optional。

Preconditions断言类(一个优雅的检验参数的工具类)
- checkArgument(boolean) :
功能描述:检查boolean是否为真。 用作方法中检查参数
失败时抛出的异常类型: IllegalArgumentException - checkNotNull(T):
功能描述:检查value不为null, 直接返回value;
失败时抛出的异常类型:NullPointerException - checkState(boolean):
功能描述:检查对象的一些状态,不依赖方法参数。 例如, Iterator可以用来next是否在remove之前被调用。
失败时抛出的异常类型:IllegalStateException - checkElementIndex(int index, int size):
功能描述:检查index是否为在一个长度为size的list, string或array合法的范围。 index的范围区间是[0, size)(包含0不包含size)。无需直接传入list, string或array, 只需传入大小。返回index。
失败时抛出的异常类型:IndexOutOfBoundsException - checkPositionIndex(int index, int size):
功能描述:检查位置index是否为在一个长度为size的list, string或array合法的范围。 index的范围区间是[0, size)(包含0不包含size)。无需直接传入list, string或array, 只需传入大小。返回index。
失败时抛出的异常类型:IndexOutOfBoundsException - checkPositionIndexes(int start, int end, int size):
功能描述:检查[start, end)是一个长度为size的list, string或array合法的范围子集。伴随着错误信息。
失败时抛出的异常类型:IndexOutOfBoundsException
下面是使用例子:
public class train4 {
public static void main(String[] args){
String str = null;
List<Integer> list = Arrays.asList(1, 2, 3, 4, 5, 6);
Boolean result = false;
Preconditions.checkNotNull(str,"字符串为空");
Preconditions.checkArgument(list.size()<2,"列表长度大于2");
Preconditions.checkState(result,"布尔值为false");
Preconditions.checkElementIndex(9,list.size(),"数组下标越界");
Preconditions.checkPositionIndex(9,list.size(),"数组下标越界");
Preconditions.checkPositionIndexes(9,10,list.size());
}
}
本文详细介绍了Java 8的Stream API,包括如何创建Stream、常用操作如filter、map、limit、skip、sorted、collect等,并展示了如何使用Optional类处理可能的空值情况。此外,还探讨了Preconditions断言类在参数检查中的应用。
7340

被折叠的 条评论
为什么被折叠?



