d3js绘制y坐标轴_Pandas 可视化综合指南:手把手从零教你绘制数据图表

本文介绍了如何使用D3.js库进行数据可视化,特别是聚焦于Y坐标轴的绘制,包括取值范围设定、x、y轴的刻度设置以及对数坐标的应用。同时,提到了Pandas在数据处理中的重要作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(给数据分析与开发加星标,提升数据技能)

转自:量子位(ID:QbitAI),编译:晓查

数据可视化本来是一个非常复杂的过程,但随着Pandas数据帧plot()函数的出现,使得创建可视化图形变得很容易。在数据帧上进行操作的plot()函数只是 matplotlib中plt.plot()函数的一个简单包装 ,可以帮助你在绘图过程中省去那些长长的matplotlib代码。最近,一位来自印度的小哥以2019年世界幸福指数的数据为例,详细讲述了在Pandas中plot()函数的各种参数设置的小技巧,熟练掌握这些技巧后,你也能绘制出丰富多彩的可视化图表。 导入数据在绘制图形前,我们首先需要导入csv文件:
1import pandas as pd
2df=pd.read_csv(‘./world-happiness-report-2019.csv’)
3df.head(3)
这个csv图标的内容是各个国家按照不同维度评价的幸福指数(数据下载地址见文末): 929f889e1a790bdc2e33265d1aca8e0a.png数据帧中一些列的名称比较冗长,可以重命名使其更加简洁:
1df.rename(columns={“Country (region)”: “Country”, “Log of GDPper capita”: “Log_GDP_per_capita”, “Healthy life
2expectancy”:”Health_life_expect”},inplace=True)
3df.columns
绘制柱状图、散点图等常见图形从最近简单的 柱状图开始,只统计腐败程度、自由度、宽容度、社会支持等几个维度
1%matplotlib tk
2df1=df[:5]
3df1.plot(‘Country’,[‘Corruption’,’Freedom’,’Generosity’,’Social support’],kind = ‘bar’)
</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值