(给数据分析与开发加星标,提升数据技能)
数据可视化本来是一个非常复杂的过程,但随着Pandas数据帧plot()函数的出现,使得创建可视化图形变得很容易。在数据帧上进行操作的plot()函数只是 matplotlib中plt.plot()函数的一个简单包装 ,可以帮助你在绘图过程中省去那些长长的matplotlib代码。最近,一位来自印度的小哥以2019年世界幸福指数的数据为例,详细讲述了在Pandas中plot()函数的各种参数设置的小技巧,熟练掌握这些技巧后,你也能绘制出丰富多彩的可视化图表。 导入数据在绘制图形前,我们首先需要导入csv文件:转自:量子位(ID:QbitAI),编译:晓查
1import pandas as pd
2df=pd.read_csv(‘./world-happiness-report-2019.csv’)
3df.head(3)
这个csv图标的内容是各个国家按照不同维度评价的幸福指数(数据下载地址见文末):

1df.rename(columns={“Country (region)”: “Country”, “Log of GDPper capita”: “Log_GDP_per_capita”, “Healthy life
2expectancy”:”Health_life_expect”},inplace=True)
3df.columns
绘制柱状图、散点图等常见图形从最近简单的
柱状图开始,只统计腐败程度、自由度、宽容度、社会支持等几个维度
1%matplotlib tk
2df1=df[:5]
3df1.plot(‘Country’,[‘Corruption’,’Freedom’,’Generosity’,’Social support’],kind = ‘bar’)
</