目录
0. 承前
本篇博文是对文章,链接:
5. 马科维茨资产组合模型+政策意图AI金融智能体(Qwen-Max)增强方案(理论+Python实战)
6. 马科维茨资产组合模型+政策意图AI金融智能体(DeepSeek-V3)增强方案(理论+Python实战)
的政策信息输入过少而作的改良开发:金融研报导入AI金融智能体,实现批量处理与智能分析。
本文主旨:
- 信息扩充:由于上两篇文章中,AI金融智能体输入信息量过少,因此本文使用长文本大模型(Qwen-Long)来扩充AI智能体的信息输入。
- 开发过程记录:本文目的是打通大批量金融研报至长文本AI金融智能体(Qwen-Long)的信息通道,并没有实现分析结果对金融资产组合权重的影响,具体实现参考文章:
7. 马科维茨资产组合模型+金融研报AI长文本智能体(Qwen-Long)增强方案(理论+Python实战)
如果想更加全面清晰地了解金融资产组合模型进化论的体系架构,可参考:
0. 金融资产组合模型进化全图鉴
1. 简介
本文介绍如何使用通义千问大模型(Qwen-long)来批量处理和分析PDF研究报告。通过DashScope API,我们可以让AI模型阅读并分析多个PDF文件,从而获得专业的分析见解。
1.1 通义千问(Qwen-Long)的长文本处理能力
通义千问长文本版本(Qwen-Long)是阿里云推出的专门用于处理长文本的大语言模型,具有以下特点:
-
超长上下文支持
- 支持高达100万token的上下文长度
- 可以同时处理多个完整的研究报告
- 保持长文本的连贯性理解
-
多文档并行处理
- 支持多个PDF文件的同时分析
- 能够综合多份报告的信息
- 提供跨文档的关联分析
-
专业领域适应
- 对金融研报格式有良好的理解
- 能准确提取报告中的关键数据
- 支持专业术语和行业分析
-
智能分析能力
- 提供深度的内容理解和总结
- 支持多角度的对比分析
- 能够提炼出有价值的投资见解
这些特性使得Qwen-Long特别适合处理金融研究报告这类专业性强、篇幅长的文档,能够帮助分析师快速获取和理解大量研报信息。
2. 基础功能实现
2.1 文件上传
首先,我们需要实现PDF文件的上传功能。以下代码展示了如何上传单个PDF文件:
import os
from pathlib import Path
from openai import OpenAI
client = OpenAI(
api_key=os.getenv("DASHSCOPE_API_KEY"),
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1",
)
file_object = client.files.create(file=Path("百炼系列手机产品介绍.docx"), purpose="file-extract")
print(file_object.id)
2.2 单文件分析
上传文件后,我们可以让模型分析单个文件的内容。这里使用流式返回,可以实时获取模型的分析结果:
completion = client.chat.completions.create(
model="qwen-long",
messages=[
{
'role': 'system', 'content': 'You are a helpful assistant.'},
{
'role': 'system', 'content': 'fileid://file-fe-xxx'},
{
'role': 'user', 'content': '这篇文章讲了什么?'}
],
stream=True,
stream_options=

最低0.47元/天 解锁文章
1573

被折叠的 条评论
为什么被折叠?



