高等代数第3版下 [丘维声 著] 2015年版_结合代数(14): Skolem-Noether定理

43eaddcf443c49fb940d01f3d40e905d.png

内容提要:

1 有限维中心单代数的不可约双模; 2 有限维代数的中心单子代数; 3 Skolem-Noether定理; 本文主要参考文献.

本文的前置内容为:

格罗卜:结合代数(10): 半单环和Wedderburn-Artin定理

格罗卜:结合代数(12): Burnside引理和有限维中心单代数

更多内容,请移步专栏目录:

格罗卜:格罗卜的数学乐园-目录​zhuanlan.zhihu.com
2c8ab4de13dfdbda168da54207412af8.png

1 有限维中心单代数的不可约双模

[有限维中心单代数的不可约模]

维中心单
-代数, 那么
的不可约子模两两同构,都具有形式
, 满足:

;

可以得出
.
[证明] 根据 有限维中心单代数的判定,我们有
. 因此不可约的
-模两两同构. 由于
是单代数,所以
自己是单
-模. 我们有
;

可以得出
.

如果
是不可约的
-模, 那么对于任意
都有
,
给出同构,因此
, 并且
和 由
可以得出
.

2 有限维代数的中心单子代数

[有限维代数的中心单子代数]

是域
上有限维代数,
的子代数. 并且
是中心单
-代数,
. 那么:

(1)

(2)
给出

(3)
.
[证明] (1)
模:
,
.

由于
是中心单
-代数, 所以
. 这里
;
可以得出
.

因此
,并且如果

对任意的

如果
则由
, 所以
. 因此
, 因此
.

所以
.

(2) 令
的理想,那么
的理想,并且
.

的基,

对于任意
, 存在唯一表示

因此对于任意的
, 存在唯一表示

如果
, 那么
,

于是我们有
. 因此
是单态射.

另一方面,如果
的理想,那么
-模,所以
.
的理想,
,因此
是满态射.

(3)
. 现在如果
,那么对于任意的
,
,所以
.

是域,
是域
上有限维代数, 并且
是中心单
-代数, 那么
的理想具有形式
. 其中
的理想.
[证明] 我们有
.

是域,
是域
上有限维代数, 并且
是中心单
-代数, 那么:

(i)
单.

(ii)
中心单
中心单.

(iii)
, 那么
.

(iv)
半单
半单.
[证明] 由上一个结果.

3 Skolem-Noether定理

[Skolem-Noether定理]

是域
有限维中心单代数
单子代数. 那么任意的
-代数同态
可以延拓为内自同构
.
[证明]
,这是一个单代数. 我们给出
上的
-模结构.

第一种
-模
:
,
.

第二种
-模
:
,
.

我们有
, 所以这两个
-模是同构的
-模. 令
是这个同构.
, 对于
.

特别地,
,对于
.
.

因为
是同构,所以
是可逆元.

我们还知道
, 由此得到
,

, 有

即可.

作为上面Skolem-Noether定理的特例,我们也把下面的定理称为Skolem-Noether定理.

[Skolem-Noether定理]

是域
有限维中心单代数, 那么
的自同构都是内自同构.

本文主要参考文献: Joseph J.Rotman : 高等近世代数, Advanced Modern Algebra, 出版社:机械工业出版社, ISBN:9787111191605

高等近世代数 (豆瓣)​book.douban.com
a5cc4e96d3f5c6e3b1d8fcfea7b0eacc.png
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值