step by step 3000 3_MAT和STEP哪个更难考?get解析篇

前言

STEP全称为sixth term examination paper,是剑桥大学招生考试委员会为测试申请者数学能力而举行的笔试。指定专业的申请者只有提交该考试成绩才能获得正式录取。

MAT全称为mathematics admissions test,是牛津大学测试本科﹙或本硕﹚数学、计算机相关专业申请者的数学水平而举行的笔试。牛津大学指定专业的申请者必须参加该考试并取得一定的成绩才能获邀进入面试。

而时常有小伙伴这样问荔枝君:

MAT和STEP

同为英国大学数学专业

用来考核申请者能力的考试,

哪个更难考呢?

我们先来听听它们自己怎么说?

MAT自述:以为我比STEP简单?同样虐得你崩溃掉泪

STEP自述:都说我是“史上最难考试”,你想挑战一下吗?

但其实接触过的同学,更多的回答是STEP更难一些,那STEP究竟比MAT难在哪?

其实,剑桥数学比牛津数学更难申请,主要就是因为STEP。

从要求考试的学校来看

牛津本科数学与计算机类专业、帝国理工本科数学类专业、华威大学本科数学与研究生数学,需要考MAT。

STEP主要被剑桥大学和华威大学采用,不过也有一些大学要求或鼓励学生参加STEP考试作为offer的一部分,这些学校包括:

  • 帝国理工(如果错过MAT deadline,需要考STEP)
  • KCL(如果只有AS数学,没有A-level数学时,需要考STEP)
  • UCL
  • 巴斯大学
  • 兰卡斯特大学
  • 布里斯托大学

从考试时间来看

STEP一般是在year 13结束后考试;MAT是在year 13开学时考试的,复习时间上更占优势。

牛津和帝国理工,要求申请者11月初参加MAT考试,然后才能被选中参加面试。

剑桥大学和华威大学,通常要求申请者达到offer上的STEP条件,才能最终录取。

e472889f65a97661c7b368e69ce09ead.png

从考试形式来看

两种考试的考试形式很不一样。

丨 MAT考核形式

MAT只有一套卷子,考试时长2.5小时,MAT考试没有正式的及格分数线,但很显然成绩越高的学生越容易获得面试邀请。

满分100分,一共7道题,考生需要选择其中5道来回答。

question 1是选择题,包含10道题,每题4分。虽然鼓励在空白处写下答题思路,但是只有答对才得分。

questions 2-7是长问题,每题15分,考生需要展示答题过程。长问题是可以获得步骤分的。question2-7题中考生应该选择4道题来回答,具体取决于申请课程。

  • mathematics、mathematics & statistics、mathematics & philosophy申请者,应该回答1, 2, 3,4, 5
  • mathematics &computer science申请者,应该回答1,2, 3, 5, 6
  • computer science、computer science & philosophy申请者,应该回答1, 2, 5, 6, 7

丨STEP考试形式

STEP考试包括STEP 1、STEP2、STEP 3三套试卷考生通常要考1-2套试卷,具体取决于申请的哪所大学。每套卷子的考试时间是3小时。

现在STEP考试中已不再提供公式表了,这些公式都要记在心里了。

paper1包含11道问题,考生选择6题作答;paper2包含12道题,考生选择6题作答;paper3包含12道题,考生选择6题作答。

617abb57ba2ff7d0d38fc7f9aae065a1.png

跟以前一样,每道题最高20分。建议选择不超过6道题作答,但是选择哪些题没有限制。所有问题分值一样,最终成绩基于得分最高的6道题合计得出。

STEP考试成绩分成五个等级:

  • s – outstanding
  • 1 – very good
  • 2 – good
  • 3 – satisfactory
  • u – unclassified

大学会告知你,他们的录取需要什么等级的STEP成绩。

0b76addb69468483534820a5f518a1f5.png

从考试范围来看

丨MAT考试范围

MAT考核的是A-level第四学期学生对数学理解的深度,而不是广度。考试设置的目标是所有学生都能考MAT,包括没有学习过A-level进阶数学的学生,以及来自其他教育体系的学生。

MAT基于AS数学,以及A2数学的几个topic(他们认为考的时候已经学到的)。

丨STEP考试范围

2019年开始,STEP考试有所变化,大纲将反映A-level mathematics和further mathematics改革,而且每张paper的题目数量会减少。

STEP 1是基于A-level mathematics。11道问题分成两个部分:第一部分包含8道纯数,第二部分包含3个问题,至少1个是力学,至少1个概率/统计,第三个可以是力学或概率/统计。

STEP 2是基于a level mathematics和as level further mathematics。12道问题分成三个部分:第一部分包含8个纯数问题,第二部分包含2个力学问题,第三部分包含2个概率/统计问题。

STEP 3是基于a level mathematics和a level further mathematics。12道题分成三个部分:第一部分包含8个纯数问题,第二部分包含2个力学问题,第三部分包含2个概率/统计问题。

问题的风格将保持不变,并且以前真题中的大部分问题可以用于备考准备。

从成绩结果来看

STEP成绩也是8月放榜日当天公布,但是MAT成绩不会自动公布,学生只能在申请反馈中要求学校给出。

2019年MAT的平均成绩是44.9,而2018年1-5题考生平均分是50.8 ,2017年是51.3。

剑桥数学对STEP通常要求两套试卷成绩至少达到1等级。

9968b5512a4d144a466f371eb00e69a8.png

这两个考试有什么不同?

从表面来看,MAT更加平易近人,包括那些可能没有学习过 further maths的学生,或者来自其他教育体制的学生。可以说,它的目的是测试能力,而不是最高水平的知识。在复习时,学生们可能会发现它没有STEP那么可怕。

对比之下,STEP在数学知识和应用方面都要求更高。它更类似于学生在一流大学参加的那些考试。注意,虽然只有剑桥和华威数学通常要求学生考STEP,很多其他顶尖大学也鼓励申请者参加这个考试,作为课程准备。

考试特点总结

丨STEP:

cfb93e67942b3f34750b69bd1bad2744.png

STEP考试是这三类数学试卷中难度最高的。

一方面,STEP考试考察了考生选题的能力(不同于其他两类试卷中题目都是固定的);另一方面,STEP考试中每一道大题中都是循序渐进的,具体表现在每一道小题都是由上一小题衍生出来,或者考生需要通过使用前几个小题得到的结论来解决最后一个最难的小题。因为小题与小题之间的跨度较大,但是联系紧密,有发散性思维和较强逻辑思考能力的考生会更容易解题。

同时,因为考试时间比较紧,考生应该在考场上合理安排时间,一旦在一道题目上卡壳,应当在斟酌之后开始其他题目的解答。需要注意的是,虽然每一道大题中的小题没有在试卷上表明分值,但其实给分是越来越高的,所以通常来说完整完成四道大题的考生会比潦草完成六道大题的考生得更多的分数。

同时,STEP的试题通常会包含较为复杂的等式变换和计算,需要考生持之以恒的完成解答。

丨MAT:

ff21f13ce6b943125dc4055f79090ded.png

MAT考试的难度相较于STEP就要容易了不少。其主要是为想要申请牛津数学系的和帝国理工数学系的同学们准备的。

如果说STEP更考察考生在数学方面的发散性思维的话,MAT的考试更需要考生细心。

因为选择题分值较高,想要拿到高分的考生不应该在选择题上失分,并且在之后的大题中也尽量完美地作答。因为MAT大题中的小题之间的跳跃性没有STEP中的大,考生更容易拿到满分。同时,MAT的时间比较宽裕,足够考生从容地完成考试。

但无论是哪一种考试,学生都需要集中精力准备,毕竟牛剑的附加考试也没有那么容易的。

还有MAT考试即将开考,想要冲刺的小伙伴快来荔枝吧!

* This example shows how to use shape-based matching * in order to find a model region and use it for * further tasks. * Here, the additional task consists of reading text * within a certain region, wherefore the image has * to be aliged using the matching transformation. * * Initialization. dev_update_window ('off') dev_close_window () * Initialize visualization. read_image (ReferenceImage, 'board/board_01') get_image_size (ReferenceImage, Width, Height) initialize_visualization (Width / 2, Height / 2, WindowHandle, WindowHandleText) disp_continue_message (WindowHandle, 'black', 'true') disp_description_text (WindowHandleText) * * Define ROIs: * ROI for the shape model. dev_set_window (WindowHandle) dev_display (ReferenceImage) gen_rectangle1 (ROIModel, 60, 535, 185, 900) dev_display (ROIModel) * ROI for the text. gen_rectangle1 (ROIText, 445, 585, 590, 765) dev_display (ROIText) disp_model_message (WindowHandle) stop () * * Prepare the shape-based matching model. reduce_domain (ReferenceImage, ROIModel, ModelImage) * Create shape model and set parameters (offline step). create_generic_shape_model (ModelHandle) * Train the shape model. train_generic_shape_model (ModelImage, ModelHandle) * * Prepare the text model. create_text_model_reader ('auto', 'Industrial_0-9A-Z_Rej.omc', TextModel) * * We look for the reference transformation which we will need * for the alignment. We can extract it by finding the instance * on the reference image. * Set find parameters. set_generic_shape_model_param (ModelHandle, 'num_matches', 1) set_generic_shape_model_param (ModelHandle, 'min_score', 0.5) find_generic_shape_model (ReferenceImage, ModelHandle, MatchResultID, Matches) get_generic_shape_model_result (MatchResultID, 'all', 'hom_mat_2d', HomMat2DModel) * * Find the object in other images (online step). for i := 1 to 9 by 1 read_image (SearchImage, 'board/board_' + i$'02') find_generic_shape_model (SearchImage, ModelHandle, MatchResultID, Matches) get_generic_shape_model_result (MatchResultID, 'all', 'hom_mat_2d', HomMat2DMatch) * Compute the transformation matrix. hom_mat2d_invert (HomMat2DMatch, HomMat2DMatchInvert) hom_mat2d_compose (HomMat2DModel, HomMat2DMatchInvert, TransformationMatrix) affine_trans_image (SearchImage, ImageAffineTrans, TransformationMatrix, 'constant', 'false') * * Visualization. dev_set_window (WindowHandle) dev_display (SearchImage) get_generic_shape_model_result_object (InstanceObject, MatchResultID, 'all', 'contours') dev_display (InstanceObject) * * Reading text and numbers on the aligned image. reduce_domain (ImageAffineTrans, ROIText, ImageOCR) find_text (ImageOCR, TextModel, TextResultID) get_text_object (Characters, TextResultID, 'all_lines') get_text_result (TextResultID, 'class', RecognizedText) * * Visualization. dev_set_window (WindowHandleText) dev_display (ImageAffineTrans) dev_set_colored (12) dev_display (Characters) disp_finding_text (Characters, WindowHandle, WindowHandleText, RecognizedText) wait_seconds (0.5) endfor disp_end_of_program_message (WindowHandle, 'black', 'true') stop () dev_close_window ()
06-02
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值