python保存运行结果下次使用_python中的记忆:如何缓存函数的运行结果(1)

本文介绍了Python中的memoization技术,用于加速程序执行。通过缓存函数的输出,避免重复计算,特别是在处理昂贵计算如斐波那契数列时,能显著提高性能。文中给出了一个简单的memoization装饰器实现,并通过斐波那契数列函数展示了其效果,实测证明了memoization的加速作用。
摘要由CSDN通过智能技术生成

Python部落(python.freelycode.com)组织翻译,禁止转载,欢迎转发。

使用称为“memoization”的强大而方便的缓存技术来加速您的Python程序。

在这篇文章中,我将向您介绍一种方便的方法来加速你的Python代码,该技术称为memoization (有时拼写为memoisation):

Memoization是用作软件优化技术的特定类型的缓存。

缓存存储操作的结果以供以后使用。例如,如果将来再次访问,您的Web浏览器很可能会使用缓存来加载此教程网页。

所以,当我谈论memoization和Python时,我正在讨论的是如何根据输入记忆或缓存函数的输出。Memoization的词根来自于单词memorandum,这个词语的意思是“被记住”。

Memoization允许您根据提供给函数的参数缓存输出来优化Python函数。一旦你“记忆”一个函数,它将只为你调用的每一组参数计算一次输出。第一次之后的每次调用结果都将快速从缓存中检索出来。

在本教程中,您将看到如何以及何时用Python来运用这个简单而强大的概念,所以您可以使用它来优化自己的程序,并在某些情况下使其运行速度更快。

为什么以及何时应该在Python程序中使用Memoization?

答案是昂贵的代码:

当我分析代码时,我会根据运行需要多长时间以及它使用多少内存来考虑它。如果需要很长时间才能运行或使用大量内存的代码,那么我认为代码是昂贵的。

昂贵的代码耗费大量的资源,空间和时间来运行。当你运行昂贵的代码时,它会占用你机器上其他程序的资源。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值