Python部落(python.freelycode.com)组织翻译,禁止转载,欢迎转发。
使用称为“memoization”的强大而方便的缓存技术来加速您的Python程序。
在这篇文章中,我将向您介绍一种方便的方法来加速你的Python代码,该技术称为memoization (有时拼写为memoisation):
Memoization是用作软件优化技术的特定类型的缓存。
缓存存储操作的结果以供以后使用。例如,如果将来再次访问,您的Web浏览器很可能会使用缓存来加载此教程网页。
所以,当我谈论memoization和Python时,我正在讨论的是如何根据输入记忆或缓存函数的输出。Memoization的词根来自于单词memorandum,这个词语的意思是“被记住”。
Memoization允许您根据提供给函数的参数缓存输出来优化Python函数。一旦你“记忆”一个函数,它将只为你调用的每一组参数计算一次输出。第一次之后的每次调用结果都将快速从缓存中检索出来。
在本教程中,您将看到如何以及何时用Python来运用这个简单而强大的概念,所以您可以使用它来优化自己的程序,并在某些情况下使其运行速度更快。
为什么以及何时应该在Python程序中使用Memoization?
答案是昂贵的代码:
当我分析代码时,我会根据运行需要多长时间以及它使用多少内存来考虑它。如果需要很长时间才能运行或使用大量内存的代码,那么我认为代码是昂贵的。
昂贵的代码耗费大量的资源,空间和时间来运行。当你运行昂贵的代码时,它会占用你机器上其他程序的资源。