python贝叶斯网络预测模型_高效灵活的概率建模方法基于Python

本文介绍了Python库pomegranate,它提供了一种灵活且快速的概率建模工具,包括贝叶斯网络、隐马尔可夫模型和通用混合模型。pomegranate支持多种分布函数和并行计算,且在速度上优于numpy和scipy。此外,它还支持外核/在线学习,能处理类不平衡问题,并且在GMM、HMM和Naive Bayes等领域表现出色。
摘要由CSDN通过智能技术生成

前言

在今天给大家介绍一个研究工具:pomegranate。它比其他软件包更加灵活,更快,直观易用,并且可以在多线程中并行完成。

The API

主要模型介绍一般混合模型

隐马尔可夫模型

贝叶斯网络

贝叶斯分类器

所有模型使用做多的方法

model.log_probability(X) / model.probability(X)

model.sample()

model.fit(X, weights, inertia)

model.summarize(X, weights)

model.from_summaries(inertia)

model.predict(X) model.predict_proba(X)

model.predict_log_proba(X)

model.from_samples(X, weights)

支持很多分布函数单变量分布

1. UniformDistribution

2. BernoulliDistribution

3. NormalDistribution

4. LogNormalDistribution

5. ExponentialDistribution

6. BetaDistribution

7. GammaDistribution

8. DiscreteDistribution

9. PoissonDistribution

内核密度

1. GaussianKernelDensity

2. Un

### 基于贝叶斯优化和随机森林的3D打印能效回归预测模型 #### 贝叶斯优化简介 贝叶斯优化是一种用于黑盒函数优化的技术,特别适用于高成本目标函数。它通过构建概率代理模型来近似目标函数,并利用采集函数指导搜索过程[^2]。 #### 随机森林概述 随机森林是一种集成学习方法,由多个决策树组成。每棵树都在数据的一个子集上训练,最终结果通过对各棵树的结果进行平均得到。这种方法能够有效处理复杂的非线性关系并提供较高的泛化能力[^3]。 #### 使用 Python 的实现流程 以下是基于贝叶斯优化和随机森林的 3D 打印能效回归预测模型的具体实现: 1. **安装必要的库** 确保已安装 `scikit-optimize` 和 `sklearn` 库,它们分别用于贝叶斯优化和随机森林算法。 ```bash pip install scikit-optimize scikit-learn numpy pandas matplotlib ``` 2. **导入所需模块** ```python import numpy as np import pandas as pd from sklearn.model_selection import train_test_split, cross_val_score from sklearn.ensemble import RandomForestRegressor from skopt import BayesSearchCV from skopt.space import Real, Integer import matplotlib.pyplot as plt ``` 3. **加载和预处理数据** 数据应包含影响 3D 打印能效的各种特征以及对应的能耗标签。 ```python # 加载数据 (假设文件名为 'data.csv') data = pd.read_csv('data.csv') # 特征与标签分离 X = data.drop(columns=['energy_consumption']) y = data['energy_consumption'] # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ``` 4. **定义随机森林模型及其超参数空间** 定义随机森林模型并将可能的超参数范围传递给贝叶斯优化器。 ```python rf_model = RandomForestRegressor(random_state=42) param_space = { 'n_estimators': Integer(50, 500), # 决策树数量 'max_depth': Integer(5, 20), # 树的最大深度 'min_samples_split': Integer(2, 10), # 分裂所需的最小样本数 'min_samples_leaf': Integer(1, 8), # 叶节点所需的最小样本数 'bootstrap': [True, False], # 是否启用自助采样 } ``` 5. **应用贝叶斯优化进行超参数调优** 使用 `BayesSearchCV` 对随机森林模型执行贝叶斯优化。 ```python bayes_search = BayesSearchCV( estimator=rf_model, search_spaces=param_space, n_iter=30, # 迭代次数 cv=5, # 交叉验证折数 scoring='neg_mean_squared_error', # 性能评估指标 verbose=0, random_state=42 ) # 训练模型 bayes_search.fit(X_train, y_train) ``` 6. **分析最佳参数及模型性能** 输出经过贝叶斯优化后的最优超参数组合,并计算其在测试集上的表现。 ```python best_params = bayes_search.best_params_ print(f'Best Parameters: {best_params}') # 测试集评分 best_rf_model = bayes_search.best_estimator_ score = best_rf_model.score(X_test, y_test) print(f'Test Set R² Score: {score:.4f}') ``` 7. **可视化结果** 绘制实际值与预测值之间的对比图。 ```python predictions = best_rf_model.predict(X_test) plt.figure(figsize=(10, 6)) plt.scatter(y_test, predictions, alpha=0.7) plt.plot([y.min(), y.max()], [y.min(), y.max()], color='red') # 对角线 plt.xlabel('Actual Energy Consumption') plt.ylabel('Predicted Energy Consumption') plt.title('Energy Consumption Prediction with Random Forest and Bayesian Optimization') plt.show() ``` #### 数学建模背景 该模型的核心在于将随机森林作为基础回归工具,而贝叶斯优化则负责高效探索超参数空间以找到全局最优解。这种结合方式不仅提高了模型精度,还显著减少了手动调试的时间开销[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值