python贝叶斯网络预测模型_高效灵活的概率建模方法基于Python

本文介绍了Python库pomegranate,它提供了一种灵活且快速的概率建模工具,包括贝叶斯网络、隐马尔可夫模型和通用混合模型。pomegranate支持多种分布函数和并行计算,且在速度上优于numpy和scipy。此外,它还支持外核/在线学习,能处理类不平衡问题,并且在GMM、HMM和Naive Bayes等领域表现出色。
摘要由CSDN通过智能技术生成

前言

在今天给大家介绍一个研究工具:pomegranate。它比其他软件包更加灵活,更快,直观易用,并且可以在多线程中并行完成。

The API

主要模型介绍一般混合模型

隐马尔可夫模型

贝叶斯网络

贝叶斯分类器

所有模型使用做多的方法

model.log_probability(X) / model.probability(X)

model.sample()

model.fit(X, weights, inertia)

model.summarize(X, weights)

model.from_summaries(inertia)

model.predict(X) model.predict_proba(X)

model.predict_log_proba(X)

model.from_samples(X, weights)

支持很多分布函数单变量分布

1. UniformDistribution

2. BernoulliDistribution

3. NormalDistribution

4. LogNormalDistribution

5. ExponentialDistribution

6. BetaDistribution

7. GammaDistribution

8. DiscreteDistribution

9. PoissonDistribution

内核密度

1. GaussianKernelDensity

2. Un

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值