TL; DR
精度函数tf.metrics.accuracy根据它创建的两个局部变量计算预测与标签匹配的频率:总计和计数,用于计算logits与标签匹配的频率.
acc, acc_op = tf.metrics.accuracy(labels=tf.argmax(labels, 1),
predictions=tf.argmax(logits,1))
print(sess.run([acc, acc_op]))
print(sess.run([acc]))
# Output
#[0.0, 0.66666669]
#[0.66666669]
> acc(准确度):只使用总计和计数返回指标,不更新指标.
> acc_op(更新):更新指标.
要了解acc返回0.0的原因,请查看以下详细信息.
细节使用一个简单的例子:
logits = tf.placeholder(tf.int64, [2,3])
labels = tf.Variable([[0, 1, 0], [1, 0, 1]])
acc, acc_op = tf.metrics.accuracy(labels=tf.argmax(labels, 1),
predictions=tf.argmax(logits,1))
初始化变量:
由于metrics.accuracy创建了两个局部变量total和count,我们需要调用local_variables_initializer()来初始化它们.
sess = tf.Session()
sess.run(tf.local_variables_initializer())
sess.run(tf.global_variables_initializer())
stream_vars = [i for i in tf.local_variables()]
print(stream_vars)
#[,
# ]
了解更新操作和准确度计算:
print('acc:',sess.run(acc, {logits:[[0,1,0],[1,0,1]]}))
#acc: 0.0
print('[total, count]:',sess.run(stream_vars))
#[total, count]: [0.0, 0.0]
尽管提供了匹配的输入,但上面的返回值为0.0,因为总数和计数都是零.
print('ops:', sess.run(acc_op, {logits:[[0,1,0],[1,0,1]]}))
#ops: 1.0
print('[total, count]:',sess.run(stream_vars))
#[total, count]: [2.0, 2.0]
使用新输入时,将在调用更新操作时计算精度.注意:由于所有logits和标签都匹配,我们得到1.0的准确度,局部变量total和count实际上给出了正确预测的总数,并进行了总比较.
现在我们用新输入(而不是更新操作)调用准确度:
print('acc:', sess.run(acc,{logits:[[1,0,0],[0,1,0]]}))
#acc: 1.0
准确性调用不会使用新输入更新度量标准,它只使用两个局部变量返回值.注意:在这种情况下,logits和标签不匹配.现在再次调用update ops:
print('op:',sess.run(acc_op,{logits:[[0,1,0],[0,1,0]]}))
#op: 0.75
print('[total, count]:',sess.run(stream_vars))
#[total, count]: [3.0, 4.0]
指标更新为新输入
有关如何在培训期间使用指标以及如何在验证期间重置指标的更多信息,请参见here.
1596

被折叠的 条评论
为什么被折叠?



