实数系的基本定理_从零开始的数学7:Dirichlet定理1|欧拉的启发

af37cfc1e3a4aecc5ed0e2859c76b9d3.png

0:文章说明

本文章属于系列文章从零开始的数学的第七篇文章,文中会引用之前的一些结论和概念。如果有任何疑问可以按照文中链接查阅之前的文章。什么是从零开始的数学?参考第0篇文章

Pika369:从零开始的数学0:系列思路​zhuanlan.zhihu.com
aac1226f562853a1a5e77303876d81fe.png

一句话介绍:以中学数学为起点,用解决问题的方式介绍高中以上的数学知识。文章的一个重要准则是,高中以上读者无基础门槛(但是会直接引用之前文章的任何概念和技巧)。


A:问题介绍

这篇文章是本系列的第二阶段的一篇文章,主要是介绍这个阶段主要的问题是什么。

从零开始的数学第二阶段问题是关于在一个等差数列(Arithmetic progression)中的素数的问题。问题的核心是想知道一个等差数列中包含素数的多少,是无限的吗?

简单思考一下这个问题,一个等差数列可以被定义为一个序列

显然序列

里面任意一项都是自然数,那么我们就可以考虑
这里面究竟有多少素数。但是简单思考一下会发现有一种情况是显然不存在任何自然数的,比如

例子1:

这个序列里面不包含任意素数,因为
这显然始终是一个合数。

根据例子1,不难发现对于等差数列

中的
任意两个a,b存在大于1的公因数的情况下,等差数列中都不包含素数。

因为如果假设GCD(a,b)=k,k>1。那么有

。因为k是a,b的最大公因数所以
是整数。所以
必然是一个合数。

再重新定义一下问题中的序列,在原有的定义里面加上a,b的最大公因数为1,或者称他们是互素的两个自然数:

先算一个具体的例子然后再提出猜测。

例子2:

等差数列
中含有多少个素数?

通过计Mathematica计算可以知道,共有12970个素数。程序如下(非常直接,此处不考虑算法效率问题):

A
12970
DiscretePlot[NOPIA[L], {L, 1, 100000, 50}]

画一下增长的图像得到结果

f507a534398f83dfc075e705d2148e8e.png

所以我们猜测,如果加上互素的条件等差数列An中将会有无数个素数。


B:欧拉的启发:

发散

整个问题的解决实际上是收到了欧拉的启发。欧拉在1742年做出如标题的结论,然后经过高斯,勒让德,以及蒂利克雷(Dirichlet)经过98年的研究最终才得到证明。

所以现在回到问题的开端,来看看欧拉给后面的数学家的启发

(如果有读者对什么是级数,级数的收敛与发散是什么定义,以及判断收敛与发散的基本方法有疑问,可以参考之前的文章:

Pika369:从零开始的数学2:欧拉乘积2|级数​zhuanlan.zhihu.com
84d5d4b47265f26b65ff1d57b9a7355c.png

以及

Pika369:从零开始的数学3:欧拉乘积3|级数收敛判定​zhuanlan.zhihu.com
46b2e6c71e93140cedfb6e498548f91c.png

欧拉得出这个结论源自于他之前的一个发现:欧拉乘积。这正是本系列一阶段的主要问题,了解欧拉乘积分可以参考第一阶段所有文章,重点是:

Pika369:从零开始的数学1:欧拉乘积1|序列的极限​zhuanlan.zhihu.com
64be41ae2fc22335e9c0fa39fb565bfc.png
Pika369:从零开始的数学2:欧拉乘积2|级数​zhuanlan.zhihu.com
84d5d4b47265f26b65ff1d57b9a7355c.png
Pika369:从零开始的数学3:欧拉乘积3|级数收敛判定​zhuanlan.zhihu.com
46b2e6c71e93140cedfb6e498548f91c.png
Pika369:从零开始的数学4:欧拉乘积4|Dirichlet级数&Liouville函数​zhuanlan.zhihu.com
ce09305d45771de6791dfe5921202f06.png
Pika369:从零开始的数学5:欧拉乘积5|Dirichlet卷积​zhuanlan.zhihu.com
908cc7210bd59f3072971243060cc2f9.png

从第阶段我们知道最简单的欧拉乘积可以表达为级数的形式,从而和zeta函数

产生联系。(文章中因为要涉及讨论对数,为了讨论的简单所以这里假定s取实数)也就是:

在之前的文章中用了一个分析的技巧,即展开

,并用算数基本定理讨论得到
,s>1

但是现在已经得到以上结论,我们实际上可以从另一个角度出发,从而将

从欧拉乘积中导出。

然后观察到:

我们希望从s靠近1的过程中发现为什么

是发散的。

C:从欧拉乘积中导出

对式子

两边取对数,那么有:

到这一步可以说已经非常接近

的形式,
只要能展开并去掉
。因为只要能去掉log那么求和符号里面就能出现

可是去掉log这是什么意思呢?

因为这里有一个关于对数函数

附近的性质,而这个性质会帮助我们实现展开并去掉log。

例子3:考虑在x=0附近范围内函数

与函数
的图像

d979bbbf19e42b32a2a20103bdcc62ae.png

可以发现两个函数在x=0附近有如下性质:

1.二者函数值是非常接近的。

2.x=0这个点是两个函数的交点

3.

换一个角度看,考虑函数

在x=0附近的图像:

3c35bfe0af05ddeb4cfa3f5ec651138d.png

可以看到当x的值越来越接近0的时候,函数

的值越来越小,越来越趋近于0.

关于函数的图像再考虑这样一个问题:如何用最简单的函数来估计函数x与

的差
这个函数?

比如函数:

什么意思呢?因为我们发现函数

的图像有这样的性质:

55739e17613b99221ab9042c16b660b4.png

用不等式的语言来描述就是:

在x足够小的时候存在两个非零实数
使得函数E(x)满足不等式:

或者可以把这个关系表述为,当x足够小的时候
。这个符号的意思是,只要存在两个实数使得
在x=0附近的值能被这两个实数控制,而这两个实数就是
的上界和下界(上界,下界的意思是:
)。

注意这里

代表此处的这一项,在给定的范围内始终被f(x)控制,但是被
在这个范围内控制的函数可不止一个。比如在x=0附近,也有

并且不能认为

是一个具体的函数,而应该是一类能够在某个范围内被
控制的函数。

比如计算的时候

,但是
因为
在x=0附近也能被
控制。
具体一点还可以确定当
的时候,
,也就可以表示为

以上关系就是打开括号的关键!

因为如果

那么:

这等价于

也就是说可以表达为

套用这个关系,回到之前的式子令

。我们可以得到:

这里不用讨论p取什么值,s取什么值得时候能满足关系套用log(x+1)的性质。因为,

所以显然满足。

打开log:

到这一步,我们用log(x+1)在x=0的局部性质去掉了log,得到了所期望的

稍微变形下方便之后的观察。

先把

先放一边,先看看级数

由之前的观察我们知道

表示级数这一项由
控制,而且其绝对值小于
。因为我们知道,全体素数的集合是自然数集合的子集,而
又是收敛的,由以上两点我们就能
用比较判别法证明它绝对收敛

(什么是级数的绝对收敛,以及比较判别法可以参考第三篇文章。

Pika369:从零开始的数学3:欧拉乘积3|级数收敛判定​zhuanlan.zhihu.com
46b2e6c71e93140cedfb6e498548f91c.png

以上的文字叙述可以写为:

这里说明一下,按照上文对

的定义,
则表示此处被1控制,也就是一个常数。

这说明级数

绝对收敛(参考文章3)

回到这个式子有

是一个常数。

D:补充极限的性质

本部分需要补充一些极限的重要性质,因为之后的证明会用到。

所以有
,对
成立。

如果令

,回忆第一篇关于序列极限的定义可以知道

因此可以用这个序列来描述什么叫
时候
的性质.

因为文章1和文章2,只讲了序列极限的概念和基本定义还没有讲具体的运算,所以这里

看上去比不是那么显然。用一个例子来介绍:

例子4:证明

按照第一篇文章的思路,我们很容易直观的感觉到为什么极限是1。因为只有包含1的任意小开区间,开区间外部只存在序列的有限项。

但是我们这里要按照形式化的套路来证明它。即对于任意小的

存在N,使得当
的时候都有:

经过简单的观察知道只要使得,

即可。

由于极限的基本运算性质我们可以知道其实例子4上的极限最关键的部分其实等价于证明

,

接下来可以证明一个推广的结论

例子5:对于任意

都有

因为从函数的角度来看函数

只要s是正实数,那么函数就是一个单调减函数,因此序列的值应该会向着0聚拢,一般来说唯一的那一个聚点就很可能是极限所在的位置。用形式化的逻辑来证明它,同上只要证明对于任意小的
存在N,使得当
的时候都有:

即可。

那么问题的关键就是找到这个N与

对应关系即可,也就是一个函数。
这个函数的构造,其实 可以通过解不等式来完成

等价于

所以只需要令

即可。

补充关于序列极限不等式的性质:

如果两个序列
存在极限分别为
,并且存在某个
有:

那么他们的极限满足不等式:

这个性质很好证明。因为这两个序列可以构造一个新的序列:

,
项目开始就是一个正项序列。而这个正项序列的极限就应该是

当然有可能

但是
,比如

这里注意有一种较为特殊的情形,就是

收敛到无穷,也就是极限是无穷。这里有3种情况:

2.

3.

以上三种情况该极限的性质依然满足,但是要注意前提是序列极限存在。

因为序列收敛到无穷并不表示序列极限不存在。

比如

极限不存在,而
极限存在,为
。因为极限存在说的是存在唯一的这样一个点,该点的任意邻域其外部只有序列的有限个点。显然
也可以是这样的点。比如
的邻域可以表示为,
通过调整N来改变邻域。

我们可以严格的证明第一种情况

如果两个序列
极限均存在,并且存在某个
有:

并且

那么他们的极限满足不等式:

因为

,所以对于任意 都存在一个
使得当
时都有

所以由于

因此对任意

都存在一个
使得当
时都有

所以

举一个极限不存在不等式没办法满足的例子

例子6:

该序列的每一项都大于
,但是我们并不能说前者的极限大于后者的极限。因为前者的极限根本不存在。

接下来还要介绍一个关于序列极限的性质,这个性质在后面的证明中会有作用。这个性质其实可以由函数的连续性非常自然的导出,但是在这篇文章中引入函数的连续性会显得非常冗长,所以本篇文章会用具体

函数的性质导出
对于任意的

从而如果存在一个正项序列
从某个N开始单调增加,并且
序列
,序列极限为A,那么序列
收敛到

在定理给定的条件下,我们可以打开绝对值,不等式可以等价为一下形式:

那么不等式就相当于在范围

的条件下,证明函数
是一个单增加函数。

通过求导数,

,可以知道这件事。

这样我们就完成了第一部分的证明。

第二部分的极限性质则需要利用上一部分的不等式。

对于任意足够小的

总是存在
,使得任意
都有

由上面的不等式可以知道:

可以导

以及上下极限。

回到证明

这对任意的

成立。

由此说明序列

收敛到

最后一个问题是关于下极限,有时候一个序列的极限可能不存在,但是它的下极限却总是存在的。

首先需要介绍一些集合的概念,假设

:

1.下界:

,并且任意A中的元素,
都有:

比如区间

,只要小于等于0都可以算是下界。

这里注意下界与集合最小值的关系,最小值是下界,但是下界未必是最小值。因为最小值的前提条件是,这个值必须是集合里面的一个元素。

比如

区间0是这个集合的一个下界(当然-1也是),因为这个区间中的任何一个元素都要比0大,但是0却不是最小值。因为

还有一个需要注意的点,

也可以作为下界。

2.下确界(infimum)

一个集合的所有下界中最大的一个。

比如区间

的所有下界的集合是
,也就是全体小于等于0的实数加上负无穷。

这里面最大的一个就是0,所以0就是它的下确界,由于因为名字的关系简写为:

3.下极限

关于下极限

下极限的定义为:

也就是我们重新定义一个序列为

也就是序列从第n项起的集合

这个集合的下确界代表这个新的序列的第n项的值。
关于这个序列有一个明显的性质,这个序列是不增加的序列,未必是单调减少但是一定是不减少的。由这一条性质我们可以知道序列新定义的这个序列的极限必然是存在的(包括
)

用一个例子来说明:

例子7:序列

以及序列

用横坐标表示n,纵坐标表示序列在第n项的值。

76c05bb38b04a4e6d5b79dfceb940b8c.png

可以看到红色的序列是不减少的,因为红色序列的第一项就是整个序列

的下确界,没有理由后面当n比如取100的时候,子列第100到无穷项的下确界比整个序列的下确界更小。

再用一个例子来表明序列极限不存在,但是下极限确总是存在。也就是上一个例子中红色的序列总是收敛的。

例子8:序列

序列极限不存在但是下极限存在。

8961003291ee57b0c3fc3ed3543dedbb.png

该序列实际上有三个聚点,分别是1,-1,0主要是因为sin()的周期造成,所以序列的极限是不存在的(因为不管是哪一个聚点其邻域外面的序列的点都不止有限项目,因为外面还有聚点)。而用下确界定义的序列在图中是红色表示的,它最终会收敛到-1,他的下极限是存在的。

最后,我们通过定义可以知道两个很重要的结果:

1.如果序列令
,那么
对所有n成立。

作为性质这个性质以及之前极限不等式性质的推论我们有:

2.如果序列的下极限为
那么序列极限一定也存在并且为

因为第一条性质说了,

那么如果
收敛到
那么
也必然收敛到正无穷,反向导出它的极限必须存在。

E:证明

发散

有了以上极限性质和概念的补充终于可以进入真正的证明了。

因为

成立。所以令
依然有:

只需要关注,

即可,因为后面一部分是常数并不影响收敛性质的判断。

考虑由于

所以有:

这一步用了D节中补充的几个关于极限性质。首先保证不等式后面的极限存在,而后面可以用log的极限性质,以及可以证明

得到极限就是

而我们早在第三篇文章的例子3.4中用柯西的技巧证明了,级数

是发散的。放在此处也就是:

对任意大的

使得

这意味着

对任意M>0成立,也就是意味着
的下极限为正无穷,也意味着
的极限存在并且收敛到正无穷。这同样也意味着
发散。

F:启示

发散反过来可以说明,素数是无穷多的,否则这个级数必然是有限的,绝对不可能发散。

那么假设一个素数

,
,也就是素数p除以a余b。

那么这样我们就可以用所有除a余b的素数来表示等差数列

中所包含的素数。

用记号
表示p除以a余b

所以我们只需要证明,

发散即可。

这就是本阶段问题的核心!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值