python处理复杂excel_Python实现Excel的10个常用操作!干货满满(建议收藏)

本文介绍了使用Python处理Excel数据的十个常用操作,包括VLOOKUP的替代方法、数据透视表、两列差异比较、去重、缺失值处理、多条件筛选、模糊匹配、分类汇总、条件计算以及删除空格。通过实例展示了Python在数据分析中的高效能。
摘要由CSDN通过智能技术生成

自从学了Python后就逼迫自己不用Excel,所有操作用Python实现。直接进入正题。

数据是网上找到的销售数据,长这样:

一、关联公式:Vlookup

vlookup是excel几乎最常用的公式,一般用于两个表的关联查询等。所以我先把这张表分为两个表。

df1=sale[["订单明细号","单据日期","地区名称", "业务员名称","客户分类", "存货编码", "客户名称", "业务员编码", "存货名称", "订单号", "客户编码", "部门名称", "部门编码"]]df2=sale[["订单明细号","存货分类", "税费", "不含税金额", "订单金额", "利润", "单价","数量"]]

需求:想知道df1的每一个订单对应的利润是多少。

利润一列存在于df2的表格中,所以想知道df1的每一个订单对应的利润是多少。用excel的话首先确认订单明细号是唯一值,然后在df1新增一列写:=vlookup(a2,df2!a:h,6,0) ,然后往下拉就ok了。(剩下13个我就不写excel啦)

那用python是如何实现的呢?

#查看订单明细号是否重复,结果是没。df1["订单明细号"].duplicated().value_counts()df2["订单明细号"].duplicated().value_counts()df_c=pd.merge(df1,df2,on="订单明细号",how="left"

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值