可以检测手机帧率和温度的软件_让电影动漫统统变丝滑,480帧毫无卡顿,交大博士生开源插帧软件

上海交通大学的研究人员开源了DAIN,一种深度感知视频帧插值算法,能将30fps的视频插帧到480fps,超过许多手机慢动作录像帧率。该算法不仅适用于真实视频,还能扩展到电影、定格动画和动漫卡通等各类视频,提供更流畅的视觉效果。DAIN利用深度信息检测遮挡,提高了帧插值的质量。代码已开源,包括Windows版软件,用户无需AI背景也可使用。
摘要由CSDN通过智能技术生成

晓查 发自 凹非寺

量子位 报道 | 公众号 QbitAI

连手机都开始用上120帧的显示屏,但是网上大部分的视频居然还是30帧。

视频的帧率已经远远赶不上人民群众的需求了,所以有不少人都在研究如何把普通视频变成高帧率视频。

去年,英伟达开源了Super SloMo,从普通的视频“脑补”出高帧率的画面,从30fps插帧到240fps,即使放慢8倍也不会感到卡顿。

fdaf48ad98d5b25efb2298f4d46eb679.gif

最近,来自上海交大的一个新的插帧算法DAIN开源。它比英伟达的算法效果更清晰、帧率更高,可以把30fps的进一步插帧到480fps,这已经超过了很多手机的慢动作录像帧率。

a92457c25e2d0f622e06baec62369077.gif

更重要的是,英伟达的Super SloMo只用在了真实拍摄的视频上,而这项研究却可以扩展到常见的任何类型视频:电影、定格动画、动漫卡通等等。

38f6465008fe3ba9db4afe4729ee233f.gif
连埼玉老师的披风都变得丝滑流畅了

如果你觉得上面效果还不够明显,可以再看一张。

b11ff79b90a969325ba756e1e0e52d67.gif

羽毛的摆动是不是变得更流畅自然了?

可以想象,如果未来把DAIN用于动漫的制作,只要用低帧的动画就可以生成丝滑的效果,或许能大大减少插画师的工作。

DAIN的代码已经开源,甚至研究人员还打包了一份Windows安装程序,即使没有任何AI基础的用户也可以直接拿来用。

安装

Windows系统的用户有现成的exe文件安装(地址见文末),不过现在仍处于Alpha阶段,软件可能存在一定的不稳定性。

其他平台的用户安装起来也不复杂。

首先确保你的PyTorch版本不低于1.0.0,将项目克隆到本地:

git clone https://github.com/baowenbo/DAIN.git

安装PyTorch的各个扩展包:

cd DAINcd my_package./build.sh

还要安装英伟达预测光流网络PWCNet的软件包:

cd ../PWCNet/correlation_package_pytorch1_0./build.sh

由于作者已经提供了预训练模型,我们不必再花费大量精力去训练。创建目录model_weights,并且将预训练模型的权重下载到相应的文件夹中:

cd model_weightswget http://vllab1.ucmerced.edu/~wenbobao/DAIN/best.pth

运行命令以下命令,就可以开始给视频插帧啦!

CUDA_VISIBLE_DEVICES=0 python demo_MiddleBury_slowmotion.py —netName DAIN_slowmotion —time_step 0.25

—time_step之后的参数就是视频的放慢倍数,0.25代表视频帧率扩展为原来的4倍。如果要生成8x和10x慢动作,参数就改成0.125和0.1,依此类推。

深度加光流,图像更清晰

之前已经有很多给视频插帧的算法,DAIN和它们有什么不同呢?

DAIN的全称是Depth-Aware Video Frame Interpolation,即深度感知视频帧插值。

视频帧插值的目的是在原始帧之间合成不存在的帧。但是由于大的物体运动或遮挡,插帧的质量通常会比较低。

fbeaae4daab504c58988683ba14f1530.png

在这篇研究中,研究人员提出了一种通过探索深度信息来检测遮挡的方法。

具体来说,作者开发了一个深度感知光流投影层来合成中间流,中间流对较远的对象进行采样。此外,学习分层功能以从相邻像素收集上下文信息。

b4e2327dec509012fa8f537ddcf445d4.png

上图是DAIN的体系架构:给定两个时刻的输入帧,先估计光流和深度图,然后使用建议的深度感知流投影层生成中间流。

然后,模型基于光流和局部插值内核对输入帧、深度图和上下文特征进行扭曲,合成输出帧。

这种模型紧凑、高效且完全可微分。定量和定性的结果表明,DAIN在各种数据集上均优于最新的帧插值方法。

作者

这篇文章的第一作者Bao Wenbo,是上海交通大学电子信息与电气工程学院的博士生。

c426616bf096911044c8b23c003d7826.png

他目前的研究领域集中在图像/视频处理,计算机视觉和机器学习。另外在硬件设计、嵌入式系统和并行编程方面也很有经验。

传送门

论文地址:https://sites.google.com/view/wenbobao/dain

项目地址:https://github.com/baowenbo/DAIN

Windows版软件下载:https://drive.google.com/file/d/1uuDkF4j4H1AI1ot88XdqzwMdvAPhxKN8/view

— 完 —

量子位 QbitAI · 头条号签约

关注我们,第一时间获知前沿科技动态

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值