fftw3图片傅里叶变换_傅里叶变换中的不确定性原理(二)

3476f6eee3fcfb2314339090cf2340ab.png

建议先阅读同系列第一篇文章

阿姆斯特朗:傅里叶变换中的不确定性原理(一)​zhuanlan.zhihu.com
9de84214234bd5e99b962b7c094606ac.png

下面这篇文章将从数学理论出发,证明不确定性原理

预备知识:

  • 空间

对于

,空间
表示所有平方可积函数组成的空间,即

  • 内积

上的内积定义为

  • 范数(长度)

  • 三角不等式与Schwarz不等式

是一个内积空间(实的或复的),那么对所有的
有:

三角不等式:

Schwarz不等式:

  • Plancherel(帕斯瓦尔)定理

都是平方可积的,则

特别地

在数学上,Plancherel定理证明了傅里叶变换具有

空间的保范性。在物理上,Plancherel定理证明了信号在时域和频域的能量是相等的。
  • 傅里叶变换的微分性质

不确定性原理

不确定性原理表明一个函数不可能同时在时域和频域具有任意小的分辨率。为了说明这个概念首先给出分辨率的定义

  • 假设
    的函数,则
    在点
    的分辨率定义为

在点
的分辨率度量了它的图形在
处的偏差或者扩展。如果
的图形集中于
处,则
的分辨率很高(
的值很小)。考虑一种冲激函数
,它的分辨率是最高的,
=0。

同理分辨率在频域的定义是:

由Plancherel(帕斯瓦尔)定理知,分辨率在时域和频域的定义的分母是相等的。

  • 有了分辨率的定义,下面给出不确定性原理

假设

空间的函数,它在
处为0,则对于任意
,有

证明

  • 第一步,首先证明下面的等式成立:

其中

是实常数。

819e2bcdb9b2ebf0d37f64bf6729bfad.png

注意到,若将(1)式的两边同时除以

,则等式任然成立。由于
范数等于1,所以可以直接假设
=1(否则只要将
替换为
即可)。
  • 第二步,对(1)式两边同时求与
    内积,得到:

上式两边都含有积分式。对左边的第一项积分利用分布积分法则,并且假设

,可以得到

4e6ab8d0129603202d3009ab321a16f9.png

因此得到:

  • 第三步,将(3)式看作
    的形式,结合
    三角不等式得到

  • 第四步,将Schwarz不等式
    应用于上面两个内积,得到

即是:

  • 第五步,由傅里叶变换性质知:

结合Plancherel定理知

将(6)式代入(5)式,可以得到

  • 第六步,前面我们说过假设

结合前面说过的分辨率公式可知

  • 第7步,将(8)式代入(7)式并两边平方得:

至此,证毕。

让我们看一下著名海森堡不确定性原理:

是不是十分类似呢?其实它们就是同一个东西。

参考:小波与傅里叶分析基础(第二版)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值