计算方法(c语言版)靳天飞答案,《数值分析教程》PPT课件.ppt

本文介绍了数值分析的基本概念,包括数值分析的研究对象、地位、特点及其研究内容。探讨了数值计算中的误差来源与分类,如模型误差、观测误差、方法误差和舍入误差等,并详细分析了误差对计算结果的影响及如何避免误差的危害。
摘要由CSDN通过智能技术生成

《《数值分析教程》PPT课件.ppt》由会员分享,可在线阅读,更多相关《《数值分析教程》PPT课件.ppt(47页珍藏版)》请在装配图网上搜索。

1、计 算 方 法,第一章 引论,一、数值分析的概念、地位和特点,1 数值分析的研究对象(课程简介),3,先看两个例子。 例1 求方程 x2=2sinx,在区间(1,2)内的根。 理论上可知显然找不出根的解析式,即无法求出精确解。 例2 用Cramer法则求解n元线性方程组。 显然理论上可行,且有精确表达式。实际计算时会出现什么问题呢?,若记,则有,n阶线性代数方程组:,克莱姆算法,若A是非奇异矩阵,则方程组有唯一解。记D = detA,应用Cramer法则可得,即,其中,利用Cramer法则求解方程组需要进行的乘法和除法的次数为:,利用计算机高速的简单运算(加、减、乘、除)去实现各种复杂的功能。。

2、,数值分析的本质,科学计算 的核心内容是以现代化的计算机及数学软件(Matlab, Mathematica, Maple, MathCAD etc. )为工具,以数学模型为基础进行模拟研究。,现代科学的三个组成部分: 科学理论, 科学实验, 科学计算,2. 数值分析的地位,促使一些边缘学科的相继出现: 计算数学,计算物理学,计算力学,计算化学,计算生物学, 计算地质学,计算经济学,等等,实际问题,在建立了数学模型之后,并不能立刻用计算机直接求解,还必须寻找用计算机计算这些数学模型的数值方法,即将数学模型中的连续变量离散化,转化成一系列相应的算法步骤,编制出正确的计算程序,再上机计算得出满意的数。

3、值结果。,总的来看,数值分析这门课具有以下几个特点:,(1) 数值分析是一门与计算机应用密切结合的实用性很强的学科;,(2) 面向计算机,要根据计算机的特点提供实际可行的有效算法;,(3) 有可靠的理论分析,能任意逼近并达到精度要求,对近似算法要保证收敛性和数值稳定性;,3. 数值分析的特点,(4) 要有好的算法复杂性,即时间复杂度和空间复杂度要小;,(5) 要有数值试验。,二、数值分析的研究内容,理论上课时数:30 上机实验时数:0,参考书: 1. 计算方法(c语言版)(第1版),靳天飞等,清华大学出版社 ,2010.6,教 材: 1. 数值分析(第5版),李庆扬等,清华大学出版社,2008。

4、.12,2 数值计算的误差,2.1 误差的来源与分类,用计算机解决科学计算问题时,需要经历以下几个环节:,数值结果是指在选择某种数值方法之后,编制程序正确,输入初始数据正确的情形下所获得的结果。,实际问题的精确解与用计算机计算出来的数值结果之间就有差异,这种差异在数学上称为误差。,模型误差 /* Modeling Error */ 从实际问题中抽象出数学模型时产生的误差,观测误差 /* Measurement Error */ 通过测量得到模型中参数的值 导致输入数据的 误差,方法误差 (截断误差 /* Truncation Error */ ) 近似求解时产生的误差,舍入误差 /* Roun。

5、doff Error */ 由于计算机字长有限而在数值运算的每一步所产生的误差,大家一起猜?,1,1 / e,解法之一:将 作Taylor展开后再积分,| 舍入误差 /* Roundoff Error */ |,= 0.747 ,由截去部分 /* excluded terms */ 引起,由留下部分 /* included terms */ 引起,设 是某实数的精确值, 是它的一个近似值,则称 为近似值 的绝对误差,简称误差.,2.2 误差与有效数字,定义2.1 绝对误差、相对误差,称为 的相对误差, 常用 表示.,定义2.3 有效数字 /* significant digits */,用科学。

6、计数法,记 (其中 ). 若 (即 的截取按四舍五入规则),则称 为有n 位有效数字,精确到 。,注:0.2300有4位有效数字,而0.0023只有2位有效。12300如果写成0.123105,则表示只有3位有效数字. 数字末尾的0不可随意省去!,例: 设 x1=1.73, x2=1.7321, x3=1.7320是其近似值, 问它们分别有几位有效数字?,3位 5位 4位,定理2.1 有效数字与相对误差的关系, 有效数字 相对误差限,已知 x* 有 n 位有效数字,则其相对误差限为, 相对误差限 有效数字,解:,例,有效数字,2.3 求函数值和算术运算的误差估计,初始数据 引起计算函数值的误差。

7、,函数值 A*的绝对误差,略去高阶项:,基本运算中的误差估计,例 假定某长方形运动场的长为x,宽为y,并实地测得其长x*=100.30米,宽y*=80.50米,若x*和y*的误差限都是0.005米,试求其面积s的近似值s*的误差限和相对误差限。,由两个数的积的相对误差限估计式得,解,据题意,,由两个数的积的误差限估计式得,例 在计算球的体积时,为了使相对误差限为1%,问测量半径r时允许的相对误差限为多少?,从而有,解,计算球的体积公式为,设体积,的近似值为,,半径,的近似值为,,则,得到相对误差限估计式为,这说明,测量半径r时允许的相对误差限为1/300。,3 病态问题、数值稳定性与避免误差危。

8、害,问题:对于 y = f (x),若用 x* 取代 x,将对y 产生什么影响?,3.1 病态问题与条件数,条件数很大时,初始数据的微小误差可能引起结果 A 的很大误差.,对数学问题而言,如果输入数据有微小扰动,引起输出数据(即数学问题的解)有很大扰动,则称数学问题是病态问题,否则称为良态问题。,例:计算, 公式一:,注意此公式精确成立,?,?,? !,! !,What happened?!,3.2 数值方法的稳定性,考察第n步的误差, 公式,注意此公式与公式一 在理论上等价。,方法:先估计一个IN ,再反推要求的In ( n N )。,可取,取,考察反推一步的误差:,以此类推,对 n N 有。

9、:,误差逐步递减, 这样的算法称为稳定的算法 /* stable algorithm */,在我们今后的讨论中,误差将不可回避,算法的 稳定性会是一个非常重要的话题。,定义:一个算法如果输入数据有扰动(即有误差),而计算过程中舍入误差不增长,则称此算法是数值稳定的,否则称此算法为不稳定的。,1. 要避免除数绝对值远远小于被除数绝对值的除法;,2。避免两个相近的数相减;,3. 要防止大数“吃掉”小数;,2。应选用数值稳定性的计算方法;,2。简化计算步骤和公式,设法减少运算次数。,避免误差危害的若干原则,3.3 避免误差危害的若干原则,避免两个相近的数相减,当遇到两个相近的数相减时,参与运算的数应。

10、当多保留几位有效数字或者变换原来公式以避免这种情况的发生 。,由前面公式可知,可以看到,如果两个相近的数相减,则,而相对误差限就会比较大,故有效数字位会大大减少。,较小,,例 给定,若使用计算机计算有,,应如何变换公式使有效数字位增加?,,若使用计算器取四位有效数字计算,解,使用计算器计算取四位有效数字得,从而得到,但由于,而使用计算器取四位有效数字得,所以有,这说明变换公式后能使有效数字位由1位增加到3位。, 几种经验性避免方法:,当 | x | 1 时:,取右端的有限项近似代替左端。,要防止小数被大数“吃掉”而使有效数字位损失,例 求一元二次方程,在数值运算中,如果两个参与运算的数相差太大。

11、,则小数有可能被大数“吃掉”而使有效数字位损失,从而影响计算结果的可靠性。,的根。,远远大于,解,求一元二次方程的根可以使用公式,有可能,可能损失有效数字位,使计算结果出现错误。,按新的求根公式计算得到方程两个准确根为,例如,在只有7位有效数字的计算机系统上使用求根公式解方程,得到的两个根为,要避免这种错误的发生,可以修改求根公式为 ,,要注意减少运算的次数,对于一个计算问题,如果能减少运算次数的话,我们不仅能减少计算时间,提高运行的速度,而且还可以减少误差的积累。,如果把原式子改写为,解,按公式直接计算每一项后,再把每一项求和,就要进行,则计算n次多项式的算法可以是,按秦九韶算法计算n次多项。

12、式的值,只需要n次乘法和n次加法。,的值。,例 计算n次多项式,次乘法和n次加法。,例 计算 ln2 的近似值,要求误差小于10.,解:,计算量太大各项的舍入误差会损失和的有效数字,(b) 用级数 计算,用前 9 项(即取 m = 8)计算就能达到精度要求:,(a) 用级数 计算,分母接近零的数会产生溢出错误,因而产生大的 误差, 此时可以用数学公式化简后再做.,避免做除数绝对值远远小于被除数绝对值的除法,利用等价变换使下列表达式计算比较精确.,例,答案,误差的种类,模型误差:,观测误差,截断误差,舍入误差,绝对误差,相对误差,误差的表示法,内容回顾,算法设计遵循的条件:,(5)绝对值太小的数不宜作为除数 。,(1)应选用数值稳定性的计算方法 ;,(2)简化计算步骤和公式,设法减少运算次数 ;,(3)合理安排运算顺序,防止大数淹没小数 ;,(4)避免两相近数相减。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值