树是一个有n个有限节点组成一个具有层次关系的集合,每个节点有0个或者多个子节点,没有父节点的节点称为根节点,也就是说除了根节点以外每个节点都有父节点,并且有且只有一个。 树的种类比较多,有二叉树,红黑树,AVL树,B树,哈夫曼树,字典树等等。
甚至堆我们也可以把它看成是一棵树,树的这么多种类中,我们最常见的应该是二叉树了,下面我们来看一下他的结构。
定义:
- 结点的度: 一个结点含有的子结点的个数称为该结点的度;
- 叶结点或终端结点: 度为0的结点称为叶结点;
- 非终端结点或分支结点: 度不为0的结点;
- 双亲结点或父结点: 若一个结点含有子结点,则这个结点称为其子结点的父结点;
- 孩子结点或子结点: 一个结点含有的子树的根结点称为该结点的子结点;
- 兄弟结点: 具有相同父结点的结点互称为兄弟结点;
- 树的度: 一棵树中,最大的结点的度称为树的度;
- 结点的层次: 从根开始定义起,根为第1层,根的子结点为第2层,以此类推;
- 树的高度或深度: 树中结点的最大层次;
- 堂兄弟结点: 双亲在同一层的结点互为堂兄弟;
- 结点的祖先: 从根到该结点所经分支上的所有结点;
- 子孙: 以某结点为根的子树中任一结点都称为该结点的子孙。
- 森林: 由m(m>=0)棵互不相交的树的集合称为森林;
- 无序树: 树中任意节点的子结点之间没有顺序关系,这种树称为无序树,也称为自由树;
- 有序树: 树中任意节点的子结点之间有顺序关系,这种树称为有序树;
- 二叉树: 每个节点最多含有两个子树的树称为二叉树;
- 完全二叉树: 若设二叉树的深度为h,除第 h 层外,其它各层 (1~h-1) 的结点数都达到最大个数,第 h层所有的结点都连续集中在最左边,这就是完全二叉树
- 满二叉树: 除最后一层无任何子节点外,每一层上的所有结点都有两个子结点的二叉树。
- 哈夫曼树: 带权路径最短的二叉树称为哈夫曼树或最优二叉树;
应用:
树的种类实在是太多,关于树的算法题也是贼多,这一篇文章不可能全部介绍完,我们需要具体问题再具体分析。这里主要介绍的是二叉树,并且只介绍树的一些最基础的几个算法。我们先来看个图
节点类