Nicole的博客

记录机器学习中遇到的问题

排序:
默认
按更新时间
按访问量

四、集成学习之bagging——Random Forest

[Machine Learning & Algorithm] 随机森林(Random Forest) 目录 1 什么是随机森林? 2 随机森林的特点 3 随机森林的相关基础知识 4 随机森林的生成 5 袋外错误率(oob error) 6 随机森林工作原理解释...

2018-09-27 18:01:07

阅读数:95

评论数:0

三、集成学习方法——boosting和bagging

一、集成学习的基本概念 1、集成学习的原理 集成学习(ensemble learning)通过构建并结合多个学习器来完成学习任务,有时候也称为多分类器系统(mult-classifer system)、基于委员会的学习(committee - based learning)等。 集成学习的目...

2018-09-18 23:07:01

阅读数:62

评论数:0

二、分类——分类预测的评价指标(附python代码)

目录 一、常用的分类算法的评价指标 1.混淆矩阵 2.评价指标 如何画ROC曲线? 一、常用的分类算法的评价指标 (1)Precision (2)Recall (3)F-score (4)Accuracy (5)ROC (6)AUC 1.混淆矩阵 混淆矩阵是监督学习中的一...

2018-09-14 21:20:15

阅读数:148

评论数:0

一、聚类——机器学习:Mean Shift聚类算法

本文由ChardLau原创,转载请添加原文链接https://www.chardlau.com/mean-shift/ 今天的文章介绍如何利用Mean Shift算法的基本形式对数据进行聚类操作。而有关Mean Shift算法加入核函数计算漂移向量部分的内容将不在本文讲述范围内。实际上除了聚类,...

2018-07-24 14:59:09

阅读数:39

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭