python笔迹识别_python_基于Scikit learn库中KNN,SVM算法的笔迹识别

之前我们用自己写KNN算法[网址]识别了MNIST手写识别数据 [数据下载地址]

这里介绍,如何运用Scikit learn库中的KNN,SVM算法进行笔迹识别。

数据说明:

数据共有785列,第一列为label,剩下的784列数据存储的是灰度图像(0~255)的像素值 28*28=784

安装scikit learn库

看了很多安装教程,都没有安装成功。最后参考了官方网站的安装文档,只需要一步步照着做下来就能成功安装scikit learn 安装文档

函数介绍:

主成分分析(Principal components analysis,PCA):

一种分析、简化数据集的技术。主成分分析经常用于减少数据集的维数,同时保持数据集中的对方差贡献最大的特征。过程是求协方差矩阵的特征值与特征向量,通过保留低阶主成分,忽略高阶主成分。这样低阶成分往往能够保留住数据的最重要方面。

c.f.:svd奇异值分析

实际中会用svd奇异值分析去代替它,因为pca计算量比较大。

from sklearn.decomposition import PCA

#从sklearn中导入PCA

pca = PCA(n_components=0.8,whiten=True)

#设置PCA参数

#n_components:

#设为大于零的整数,会自动的选取n个主成分,

#设为分数时,选择特征值占总特征值大于n的,作为主成分

#whiten:

#True表示做白化处理,白化处理主要是为了使处理后的数据方差都一致

pca.fit_transform(data)

pca.transform(data)

#对数据data进行主成分分析

KNeighborsClassifier官方文档

from sklearn.neighbors import KNeighborsClassifier

#导入Scikit learn库中的KNN算法

neighbors=kneighbors([X, n_neighbors, return_distance])

#找到一个点的K近邻,n_neighbors近邻的数目

neighbors.fit(Training data,Target values)

#对训练集的输入和输出进行训练

pre= neighbors.predict(Test samples)

#对测试集的输入进行预测,返回预测出的标签

KNN完整程序及注解

import pandas as pd

from sklearn.decomposition import PCA

from sklearn.neighbors import KNeighborsClassifier

import time

if __name__ =="__main__":

train_num = 20000

test_num = 30000

data = pd.read_csv('train.csv')

train_data = data.values[0:train_num,1:]

train_label = data.values[0:train_num,0]

test_data = data.values[train_num:test_num,1:]

test_label = data.values[train_num:test_num,0]

t = time.time()

pca=PCA(n_components = 0.8)

train_x = pca.fit_transform(train_data)

test_x = pca.transform(test_data)

neighbors = KNeighborsClassifier(n_neighbors=4)

neighbors.fit(train_x,train_label)

pre= neighbors.predict(test_x)

acc = float((pre==test_label).sum())/len(test_x)

print u'准确率:%f,花费时间:%.2fs' %(acc,time.time()-t)

运行结果:

准确率:0.946000,花费时间:7.98s

svm方法:

支持向量机(Support Vector Machine,常简称为SVM)是一种监督式学习的方法,可广泛地应用于统计分类以及回归分析。

支持向量机建构一个或多个高维的超平面来分类资料点,这个超平面即为分类边界。直观来说,好的分类边界要距离最近的训练资料点越远越好。在支持向量机中,分类边界与最近的训练资料点之间的距离称为间隔(margin);支持向量机的目标即为找出间隔最大的超平面来作为分类边界。

sklearn库svm官方文档

SVC, NuSVC 和 LinearSVC 是三种用于对数据进行多类分类的类,我们这里主要用到SVC(class sklearn.svm.SVC)。

from sklearn import svm

#从sklearn库中导入svm

SVC函数

svc=svm.SVC(*C=1.0*, *kernel='rbf'*, *degree=3*)

#C是惩罚因子

#kernel核方法,常用的核方法有:‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’

svc.fit(X, y, sample_weight=None)

#对训练集的输入和输出进行训练

svc.predict(x)

#对测试集的输入进行预测,返回预测出的标签

#####SVM完整程序及注解

import pandas as pd

from sklearn.decomposition import PCA

from sklearn import svm

import time

if __name__ =="__main__":

train_num = 5000

test_num = 7000

data = pd.read_csv('train.csv')

train_data = data.values[0:train_num,1:]

train_label = data.values[0:train_num,0]

test_data = data.values[train_num:test_num,1:]

test_label = data.values[train_num:test_num,0]

t = time.time()

#svm方法

pca = PCA(n_components = 0.8,whiten = True)

train_x = pca.fit_transform(train_data)

test_x = pca.transform(test_data)

svc = svm.SVC(kernel = 'rbf',C = 10)

svc.fit(train_x,train_label)

pre = svc.predict(test_x)

acc = float((pre==test_label).sum())/len(test_x)

print u'准确率:%f,花费时间:%.2fs' %(acc,time.time()-t)

运行结果:

准确率:0.953000,花费时间:13.95s

对比:

在对5000个数据进行训练,2000个数据进行测试的过程中,SVM比KNN的准确率更高,所用时间更长。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值