c++杨辉三角_「知乎知识库」— 杨辉三角

8966ba872dab960a49787e026e24e0c9.png

概述内容

杨辉三角是公元1261年,我国宋代数学家杨辉在其著作《详解九章算法》中给出的一个用数字排列起来的三角形阵。由于杨辉在书中引用了贾宪著的《开方作法本源》和“增乘开方法”,因此这个三角形也称“贾宪三角”。在欧洲,这个三角形叫帕斯卡三角形,是帕斯卡在1654年研究出来的,比杨辉晚了近400年时间。

发展历程

北宋人贾宪约1050年首先使用”贾宪三角”进行高次开方运算, 南宋数学家杨辉在《详解九章算法》(1261年)中,保存了一张宝贵图形——“开方作法本源”图。根据杨辉自注说,这个图“出《释锁算术》,贾宪用此术”。宋元时代的数学家求数字高次方程正根的方法叫做“开方“,又叫做“释锁”。很可能在杨辉之前,已经有一些数学家采用此图来研究开方术,其中以贾宪为最早。因此,我们应该把这个具有世界意义的重大贡献归功于贾宪和杨辉二人。贾宪采用得最早,但贾宪的著作可惜早已失传,全靠杨辉在《详解九章算法》里把这份珍贵的遗产保存了下来,并加以发扬光大,广泛应用。“开法作法本源” 图又叫做“乘方求廉图”,我们现在采取华罗庚教授的意见,称它为“杨辉三角”。

12d7e4589b611ef6695139768700f164.png
“开方作法本源”图

贾宪是天文学家楚衍的学生,他的履历我们知道的很少。他大概在宋仁宗时代(1023~1063年),就发现了二项高次幂(指数为正整数)展开式的各项系数的规律。在“杨辉三角”中,记录到五乘。

4c05f4f5bb3a65d6a1a3174581be18f6.png

这是世界上最古老的记录。在杨辉之后,朱世杰在《四元玉鉴》中进一步发展为七乘,载有“古法七乘方图”,比原图多列两层,并且添上了几根斜线。他说这个三角形是古法,因为他至少比贾宪晚二百五十年。继朱世杰之后,明代数学家如吴敬、程大位等的著作中都有和“杨辉三角”相同的图形,可见我国历代数学家对这个图形都很重视。

b0f8895c6faa33cc2d4412a4cc462392.png
古法七乘方图
“古法七乘方图”

在欧洲,称它为“巴斯加三角”。其实,在巴斯加之前,已经有不少人讨论过,其中最早的是德国人阿皮纳斯,他曾经把这张图形刻在1527年出版的一本算术书封面上。此后,德国人施蒂费尔(Stifel, 1544年),意大利人塔塔伊亚(Tartaglia,1550年)等都曾研究过这种图形。直到十七世纪,法国数学家帕斯卡在13岁时发现了“帕斯卡三角“。

杨辉三角的概述

我国当代数学家华罗庚教授在《从杨辉三角谈起》一书中,对它作过精彩的阐述与发挥。他把杨辉三角排列成下列现代形式,从图中我们很容易看出,这个三角的两条斜边都是由数字1组成的,而其余的数都等于它肩上的两个数相加。从图形上说明的任一数C(n,r)等于它肩上的两数C(n-1,r-1)及C(n-1,r)之和。写成数学关系式C(n,r)=C(n-1,r-1)+C(n-1,r)(n=1,2,3,···n)。

d73b4df283b9ce10831c5e629e91a29c.png

这个式子叫做杨辉恒等式,是杨辉三角的基本性质。杨辉每一行的数字左右对称,即C(n,r)=C(n,n-r),由此可知,当n为奇数时,最中间的两个数最大,当n为偶数时,中间一个数最大。第n行的数字有n项,数字和为2的n-1次幂。(a+b)的n次方的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项。杨辉三角的奇数行,即2的k次幂-1(k是正整数)行的各个数都是奇数,除2的k次幂行的所有数(两端的1除外)都是偶数。

将杨辉三角按如下图所示划出斜线,再求出斜线所经过的数字的和,1,1,2,3,5,8,13,21,···,此数列就是著名的斐波那契数列。这个数列最大特点就是其中每一项都等于其前两项的和。从第三个数起,每个数与它后面那个数的比值,都很接近于0.618,正是“黄金分割”。斐波那契数列又称“兔子数列”、黄金分割数列。这个看上去很简单的数列,却总是出现在人们的眼前。蜻蜓翅膀、蜂巢、菠萝表面的突起等,都是按照这个数列排列的。许多花朵的花瓣数目也具有斐波纳契数列的排列规律,如玫瑰、菊花、向日葵等。

b5b5b8a4d9e9b36dc9e959e2b43a03d7.png
杨辉三角中的斐波纳契数列

如果用笔将杨辉三角中的偶数与奇数分别标出,可以看到所有的偶数都会呈现出倒立的等边三角形状排列,而奇数都成正立的三角形排列,且等边三角形(偶数)的边长依次为:3,7,15,31,63,···,即所有的偶数依次排出以(2的n次幂-1)的长度为边长的倒立的等边三角形。

10665433a3a74dbabc6a1e21e6f6da74.png

将所有等边三角形中的偶数去掉,剩下的图形是一个类似于分形几何中的谢尔宾斯基三角形,这种三角形是研究自然界大量存在的不规则现象(海岸线性状、大气运动、海洋湍流、野生生物群体涨落,乃至股市升降等)的崭新数学工具。

3348c4919310d1791f3d218bf842ecde.png
谢尔宾斯基三角形

杨辉三角的应用

利用杨辉三角的性质,我们可以把这一古代优秀创造发展推广到很多数学应用中去。例如,它可以直接联系到二项式定理,可用来作为开方的工具,发现高阶等差级数的计算规律,推导高次方程的计算方法,解释堆垛术、混合级数以及无穷级数的概念等,都可以与杨辉三角联系起来讨论。因此,直到现在,它仍然受到世界上数学家们的重视。例如,英国中学数学教科书中,也根据杨辉三角提出了几个有趣的问题。这些问题的讨论,对于丰富中学数学教学活动,是有着一定的价值的。

参考文献:

  1. 吴效显, 赵赞. 杨辉三角形的推广[J]. 山东师范大学学报:自然科学版, 1994(2):122-123.
  2. 黄俊峰, 袁方程. 自主探究教学的一个案例——自主探究“杨辉三角”与二项式系数[J]. 中小学数学(高中版), 2011(z1):13-15.
  3. 刘天亮, 张利民. 杨辉三角形的若干性质[J]. 数学的实践与认识, 2007, 37(1):116-120.
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值