python相关参考文献_[编程]Python数据分析

本文详细介绍了Python数据分析中numpy和pandas库的常用操作,包括ndarray、Series和DataFrame的属性和方法,如排序、统计、groupby以及索引切片。并举例说明了如何进行数据切片、条件选取、数据转换以及比较DataFrame是否相等,提供了丰富的参考链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python数据分析主要用到numpy、pandas等库,虽然简单,但是没事多复习一下,可以减少使用时搜索查询的时间。

np.ndarray, pd.Series和pd.DataFrame的属性和方法

np.array的属性和方法见https://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html​docs.scipy.org

pd.Series的属性和方法见pandas.Series - pandas 0.25.3 documentation​pandas.pydata.org

pd.DataFrame的属性和方法见pandas.DataFrame - pandas 0.25.3 documentation​pandas.pydata.org

DataFrame的统计

DataFrame按照特定列排序

>>> df = pd.DataFrame({'col_1':['a','b','a','b'], 'col_2':['c','c','d','d'], 'col_3':[1, 2, 3, 4]})

>>> df

col_1 col_2 col_3

0 a c 1

1 b c 2

2 a d 3

3 b d 4

>>> df.sort_values(by=['col_1','col_3'])

col_1 col_2 col_3

0 a c 1

2 a d 3

1 b c 2

3 b d 4

注意,df.sort_values()之后的index还是没变,使用iloc切片是按照排序,使用loc切片是按照index的值,需要注意和排序不一样。

>>> df.sort_values(by=['col_1','col_3'], ignore_index=False).iloc[2,:]

col_1 b

col_2 c

col_3 2

Name: 1, dtype: object

>>> df.sort_values(by=['col_1','col_3'], ignore_index=False).loc[2,:]

col_1 a

col_2 d

col_3 3

Name: 2, dtype: object

可以设置sort_values的ignore_index=True,这样返回的DataFrame的index就是重制了的。也可以使用df = df.reset_index(drop=True)来重置index。

DataFrame的groupby方法

Pandas的groupby方法可以根据一个或多个键拆分pandas对象,分组计算需要的值,比如计数、均值、标准差等,也可以使用apply和自定义函数。

>>> df = pd.DataFrame({'col_1':['a','b','a','b'], 'col_2':['c','c','d','d'], 'col_3':[1, 2, 3, 4]})

>>> df

col_1 col_2 col_3

0 a c 1

1 b c 2

2 a d 3

3 b d 4

>>> df.groupby('col_1').mean() # 针对col_1中不同值分别求均值

col_3

col_1

a 2

b 3

>>> df.groupby('col_1').apply(np.mean) # np.mean没有括号,也可以是自定义函数

col_3

col_1

a 2.0

b 3.0

>>> df.groupby(['col_1','col_2']).count() # 计数,count不包含NaN值,而size计数时包含NaN值

col_3

col_1 col_2

a c 1

d 1

b c 1

d 1

>>> df.groupby('col_1').size()

col_1

a 2

b 2

dtype: int64

DataFrame的索引切片loc: Access a group of rows and columns by label(s) or a boolean array.

iloc: Purely integer-location based indexing for selection by position.

at: Access a single value for a row/column label pair.

iat: Access a single value for1 a row/column pair by integer position.

ix: A primarily label-location based indexer, with integer position fallback. (已经被删除,被loc和iloc替代)

>>> df

col_1 col_2 col_3

0 a c 1

1 b c 2

2 a d 3

3 b d 4

>>> df.loc[1]

col_1 b

col_2 c

col_3 2

Name: 1, dtype: object

>>> df.loc[1, 'col_1']

'b'

>>> df.loc[[3,1,0]]

col_1 col_2 col_3

3 b d 4

1 b c 2

0 a c 1

>>> df.iloc[1,1]

'c'

>>> df.at[1, 'col_1']

'b'

>>> df.iat[1,1]

'c'

# 直接通过列标签选取

>>> df['col_1']

0 a

1 b

2 a

3 b

Name: col_1, dtype: object

# 根据条件选取

>>> df[df['col_3'] == 3]

col_1 col_2 col_3

2 a d 3

需要注意的是,使用iloc时,冒号右边取不到,使用loc时,冒号右边可以取到。

>>> df = pd.DataFrame({'col_1':['a','b','a','b'], 'col_2':['c','c','d','d'], 'col_3':[1, 2, 3, 4]})

>>> df

col_1 col_2 col_3

0 a c 1

1 b c 2

2 a d 3

3 b d 4

>>> df.iloc[:1]

col_1 col_2 col_3

0 a c 1

>>> df.loc[:1]

col_1 col_2 col_3

0 a c 1

1 b c 2

比较两个dataframe是否相等

>>> df = pd.DataFrame({'col_1':['a','b','a','b'], 'col_2':['c','c','d','d'], 'col_3':[1, 2, 3, 4]})

>>> df2 = pd.DataFrame({'col_1':['a','b','a','b'], 'col_2':['c','c','d','d'], 'col_3':[1, 2, 3, 4]})

>>> df.equals(df2)

True

list、dict、np.array和pd.Series、pd.DataFrame的转换

list、dict、np.array -> pd.Series、pd.DataFrame

list -> 其他格式

import numpy as np

import pandas as pd

lis = [[1, 'a', 1.0], [2, 'b', '2.0']]

# list -> array

arr = np.array(lis)

print(arr,'\n')

# list -> series

seri = pd.Series(lis)

print(seri, '\n', seri.shape, '\n')

# list -> DataFrame

df = pd.DataFrame(lis)

print(df,'\n', df.shape, '\n')

结果为

[['1' 'a' '1.0']

['2' 'b' '2.0']]

0 [1, a, 1.0]

1 [2, b, 2.0]

dtype: object

(2,)

0 1 2

0 1 a 1

1 2 b 2.0

(2, 3)

dict -> 其他格式

d = {'a':[0,1], 'b':[2,3], 'c':[4,5]}

# dict -> series

seri = pd.Series(d)

print(seri, '\n', seri.shape, '\n')

seri = pd.Series(d, index=['row_1', 'row_2', 'row_3']) # 已经有索引的不要重新指定,否者数据为NaN

print(seri, '\n', seri.shape, '\n')

# dict -> DataFrame

df = pd.DataFrame(d, index=['row_1', 'row_2'], columns=['col_1', 'col_2', 'col_3'])

print(df,'\n', df.shape, '\n')

结果为

a [0, 1]

b [2, 3]

c [4, 5]

dtype: object

(3,)

row_1 NaN

row_2 NaN

row_3 NaN

dtype: object

(3,)

col_1 col_2 col_3

row_1 NaN NaN NaN

row_2 NaN NaN NaN

(2, 3)

array -> 其他格式

arr1 = np.array([1,2,3])

arr2 = np.array([[1, 'a', 1.0], [2, 'b', '2.0']]) # array中元素的数据类型需要相同

print(arr1,'\n', arr2, '\n')

# array -> Series

seri = pd.Series(arr1)

print(seri, '\n')

seri = pd.Series(arr1, index=['row_1', 'row_2', 'row_3']) # 没有索引的可以指定

print(seri, '\n')

# array -> DataFrame

df = pd.DataFrame(arr2, index=['row_1', 'row_2'], columns=['col_1', 'col_2', 'col_3'])

print(df,'\n', df.shape, '\n')

结果为

[1 2 3]

[['1' 'a' '1.0']

['2' 'b' '2.0']]

0 1

1 2

2 3

dtype: int64

row_1 1

row_2 2

row_3 3

dtype: int64

col_1 col_2 col_3

row_1 1 a 1.0

row_2 2 b 2.0

(2, 3)

pd.Series、pd.DataFrame -> list、dict、np.array

series -> array

# series -> array

seri = pd.Series([1, 'a', 1.0])

arr = seri.as_matrix()

print(arr, '\n')

arr = pd.Series.as_matrix(seri)

print(arr, '\n')

结果为

[1 'a' 1.0]

[1 'a' 1.0]

DataFrame -> array

# DataFrame -> array

df = pd.DataFrame([[1, 'a', 1.0], [2, 'b', '2.0']])

arr1 = df.as_matrix()

print(arr1, '\n')

arr2 = pd.DataFrame.as_matrix(df)

print(arr2, '\n')

arr3 = df.values

print(arr3, '\n')

arr4 = np.array(df)

print(arr4, '\n')

arr5 = df.as_matrix([1])

print(arr5, '\n')

结果为

[[1 'a' 1.0]

[2 'b' '2.0']]

[[1 'a' 1.0]

[2 'b' '2.0']]

[[1 'a' 1.0]

[2 'b' '2.0']]

[[1 'a' 1.0]

[2 'b' '2.0']]

[['a']

['b']]

dataframe转成dict的需求是多样的,因此它的to_dict方法需要注意orient的取值:orient默认值是'dic',返回的是字典的字典;

list返回的是列表的字典;

series返回的是序列的字典;

records返回的是字典的列表。

# DataFrame -> dic

df = pd.DataFrame([[1, 'a', 1.0], [2, 'b', 2.0]],index=['row_1', 'row_2'], columns=['int', 'string', 'decimal'])

print(df, '\n')

dic = df.to_dict()

print(dic, '\n')

dic = df.to_dict(orient='dic')

print(dic, '\n')

dic = df.to_dict(orient='list')

print(dic, '\n')

dic = df.to_dict(orient='series')

print(dic, '\n')

dic = df.to_dict(orient='records')

print(dic, '\n')

结果为

int string decimal

row_1 1 a 1.0

row_2 2 b 2.0

{'int': {'row_1': 1, 'row_2': 2}, 'string': {'row_1': 'a', 'row_2': 'b'}, 'decimal': {'row_1': 1.0, 'row_2': 2.0}}

{'int': {'row_1': 1, 'row_2': 2}, 'string': {'row_1': 'a', 'row_2': 'b'}, 'decimal': {'row_1': 1.0, 'row_2': 2.0}}

{'int': [1, 2], 'string': ['a', 'b'], 'decimal': [1.0, 2.0]}

{'int': row_1 1

row_2 2

Name: int, dtype: int64, 'string': row_1 a

row_2 b

Name: string, dtype: object, 'decimal': row_1 1.0

row_2 2.0

Name: decimal, dtype: float64}

[{'int': 1, 'string': 'a', 'decimal': 1.0}, {'int': 2, 'string': 'b', 'decimal': 2.0}]

其他

numpy的array和ndarray的区别:ndarray是一个多维数组类,也是numpy最重要的数据结构。np.array不是一个类,是创建ndarray的方便的函数。

参考文献:numpy文档

pandas文档

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值