实对称矩阵的特征值求法_正交矩阵学习小结

整理一下矩阵论学习中的相关概念。从正交矩阵开始

正交矩阵

定义1 称n阶方阵A是正交矩阵,若

正交矩阵有几个重要性质:

  1. A的逆等于A的转置,即
  2. A的行列式为±1,即
  3. A的行(列)向量组为n维单位正交向量组

上述3个性质可以看做是正交矩阵的判定准则,我们可以通过上述准则简单地判断一个矩阵是否是正交矩阵。下面,我们将从线性变换的角度,来看正交矩阵还有哪些独特的性质。首先给出正交变换的定义:

定义2 欧氏空间V的线性变换T称为正交变换,若

,有

注意,正交变换在任意标准正交基下的矩阵是正交阵,这也是我们通过正交矩阵研究正交变换的理论基础。

我们知道,线性变换在不同基下的矩阵一般是不同的,但满足相似条件。因此,我们可以通过矩阵的相似不变量来对正交变换进行分类。正交变换有两种特殊的类型,分别是旋转变换和镜像变换,它们的区别也正好可以对应于两类不同的正交矩阵,它们具有不同的行列式取值。

旋转矩阵

首先我们来看旋转矩阵。旋转矩阵(Rotation matrix)是在乘以一个向量的时候,改变向量的方向但不改变向量长度的矩阵。对于旋转矩阵,我们有:

性质1 一个矩阵是旋转矩阵,当且仅当它是正交矩阵并且它的行列式是1

旋转矩阵的行列式为1,那么它的特征值等于多少呢?我们知道矩阵的行列式等于特征值的乘积,即

那么旋转矩阵的特征值可以有以下多种情况:

  1. 全为1,即恒等变换,它也看成是一个旋转变换,只不过旋转的角度是零。
  2. 1和-1,且-1的个数必须为偶数。
  3. 除了包含实数特征值1或-1,还包含非实数的特征值。这种情况下,可以证明,非实数的特征值总是成对出现的,即如果
    是一个特征值,那么它的共轭
    也是特征值,且满足

这里引用维基百科中关于旋转矩阵的一个表述:“旋转矩阵不包括反演,反演可以把右手坐标系改变成左手坐标系或反之。所有旋转加上反演形成了正交矩阵的集合。”这里的反演,就是我们所说的镜像。也就是说,偶数个-1的特征值保证了旋转矩阵不会将右手坐标系变为左手坐标系(或反之),这是旋转变换与镜像变换的根本区别。

根据上面的分析,下面两个关于正交矩阵的性质就非常容易理解了:

性质2

是正交矩阵A的一个特征值,则
也是A的一个特征值,且有

性质3 若奇数阶正交矩阵的行列式

,则1是A的一个特征值。

镜像变换矩阵

接下来,我们来看第二类正交矩阵,镜像变换矩阵(Reflection matrix),或Householder矩阵。Householder矩阵对应的正交变换称为镜像变换,它是一类在n维空间中沿n-1维平面做的一种线性变换。这个n-1维平面通常记为

,将其单位法向量记为
。如果
已知(一般来说这是问题的出发点),我们可以通过
来构造镜像矩阵,计算公式为:

注意,这里的单位法向量

是一个列向量。

Householder矩阵有n-1个特征值为1,余下一个特征值为-1。下面给出证明:设矩阵

的特征值为
,则Householder矩阵
的特征值必为
是秩为1的幂等矩阵,可知它的特征值是
,所以,
的特征值是

Householder矩阵同时是对称矩阵。既正交又对称的矩阵有一个特殊性质是它的幂为I,即

.

根据上面的分析,下面关于正交矩阵的性质就非常容易理解了:

性质4 若正交矩阵的行列式

,则-1是A的一个特征值。

正交矩阵的几个一般性质

了解了两种特殊的正交矩阵,我们来看一下正交矩阵几个更一般的性质。

性质5 若A为正交矩阵,

是矩阵A的特征值,则
也是A的一个特征值。

证明:由

,因为正交矩阵为实矩阵,
,又因为
,因此
,即
也是A的一个特征值。

性质6 若正交矩阵A的特征值为实数,则A一定为对称矩阵。

这个性质的证明需要用到Schur定理,即任意方阵A都可以酉相似于上三角阵R,且这个上三角阵R的对角元素为矩阵A的特征值

.

证明:由Schur定理,A的特征值为实数,A可正交相似于上三角阵R,即

,对其转置,两式相乘得
,注意到
,于是得到
,可知R为对角阵,因此

也可以通过正规矩阵来证明:A是正交矩阵

A是正规矩阵
A可酉对角化,又特征值为实数
A为Hermite矩阵
A为实对称矩阵。
  • 0
    点赞
  • 2
    收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:1024 设计师:我叫白小胖 返回首页
评论
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值