关注“考研数学帝(ID:King_maths)”↑
突破来自点滴的积累~

微分中值定理与导数的应用~
(辨析细节知识点,深挖基础概念,方能在考场中游刃有余~)
Q1:微分中值定理的证明中,辅助函数的引入是否唯一???★★★★★★
【答】:通过建立辅助函数来证明微分中值定理是定理证明中的一种常用且有效的方法,虽然引入辅助函数是微分中值定理证明的关键,但所引入的辅助函数并不唯一.如何合理地构造辅助函数是问题分析与证明的难点,也是大家学习的重点.教材中大多从几何图形上进行分析,以得到启示并引入恰当的辅助函数.事实上,还可以从需要证明的结论分析入手,通过适当方法(如求原函数的方法、解微分方程的方法等)来寻找辅助函数.例如,拉格朗日中值定理的证明,既可以从定理的几何解释中寻找辅助函数

也可以从定理的结论分析入手,给出辅助函数

再对φ(x)用罗尔定理即得证.
还可将定理的结论改写为

即所设辅助函数φ(x)应满足

相比较不难看出,应取

再对φ(x)使用罗尔定理即可.
Q2:在洛必达法则这一节中,有关未定式极限的定理中都列有很多条件,为什么在应用时并不一一验证这些条件是否符合???★<

本文详细解答了关于微分中值定理的证明中辅助函数的非唯一性,以及在洛必达法则、函数极值与导数的关系、曲线凹凸性判断等方面的问题。通过实例解析,帮助读者深入理解并掌握相关数学概念。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



