八边形点坐标数的lisp_图形学入门第五课:齐次坐标

本文介绍了齐次坐标在图形学中的重要性,特别是在二维空间中的平移变换统一表达。通过引入齐次坐标,可以将2D空间中的点表示为(x, y, 1)或(x, y, 0),分别对应标量点和向量。齐次坐标使得仿射变换如旋转、缩放、切变和平移可以用矩阵乘法表示,包括3D空间中的变换。文章讨论了变换的组合、逆变换以及变换矩阵的顺序对结果的影响,并指出在3D空间中,齐次坐标使用4x4矩阵进行表示。" 130438676,18414855,macOS Ventura ISO镜像制作教程,"['macos', '系统安装', '镜像制作', '终端工具']
摘要由CSDN通过智能技术生成

齐次坐标(Homegeneous Coordinates)

在学习齐次坐标之前,我们要先好奇的问一下,为什么要学习齐次坐标。上一节课,我们学习了变换的三种基本形式:旋转,缩放,和切变。但是还有一种特殊的变换:Translation(平移变换)

d082ad3bfa2db367032c6c8b917db972.png

从上边的图中我们可以看到左边的图x在x方向移动后变成了Tx, y在y方向移动变成了Ty,变成了右边的图。我们可以用一种简单的代数来表达:

186af48b631dc7ceaf705d32848f3f93.png

虽然上边的表达看似简单,但是学过矩阵后,我们思考一下,是否可以把上边的平移依然可以像上节课的公式那样写成某一个变换矩阵x 向量(x,y)?

我们会发现,不能。而我们只能写成下面这样一种形式:

b4c54db045c7daa79d6c915a0eec6744.png

因为X' 需要变成ax+by+一个常量,Y'变成bx+cy+一个常量。这种常量的引入,导致平移变换没办法用一个矩阵乘以一个向量的公式来表达。为了统一平移变换跟其他三种变换用一种表达式来表达,人类发明了一种方法:可以通过多添加一个维度,来对齐,统一各种变换。

那么用齐次坐标来表示,针对2D空间中的一个点,可以写成这样一个平移公式:

229f13d9f676a4b071df50896d96c1f1.png

在二维里,一个点和向量可以增加一个维度来表示。

上边的公式,会发现,2D空间中的一个点,我们通过增加第三个维度,多了一个1,或者0

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值